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ABSTRACT

In this dissertation, new model reference adaptive control architectures are presented with stability,
performance, and robustness considerations, to address challenges related to the verification of adaptive
control systems.

The challenges associated with the transient performance of adaptive control systems is first ad-
dressed using two new approaches that improve the transient performance. Specifically, the first approach is
predicated on a novel controller architecture, which involves added terms in the update law entitled artificial
basis functions. These terms are constructed through a gradient optimization procedure to minimize the
system error between an uncertain dynamical system and a given reference model during the learning phase
of an adaptive controller. The second approach is an extension of the first one and minimizes the effect of
the system uncertainties more directly in the transient phase. In addition, this approach uses a varying gain
to enforce performance bounds on the system error and is further generalized to adaptive control laws with
nonlinear reference models.

Another challenge in adaptive control systems is to achieve system stability and a prescribed level
performance in the presence of actuator dynamics. It is well-known that if the actuator dynamics do not have
sufficiently high bandwidth, their presence cannot be practically neglected in the design since they limit the
achievable stability of adaptive control laws. Another major contribution of this dissertation is to address
this challenge. In particular, first a linear matrix inequalities-based hedging approach is proposed, where this
approach modifies the ideal reference model dynamics to allow for correct adaptation that is not affected by
the presence of actuator dynamics. The stability limits of this approach are computed using linear matrix
inequalities revealing the fundamental stability interplay between the parameters of the actuator dynamics
and the allowable system uncertainties. In addition, these computations are used to provide a depiction
of the feasible region of the actuator parameters such that the robustness to variation in the parameters is
addressed. Furthermore, the convergence properties of the modified reference model to the ideal reference

model are analyzed. Generalizations and applications of the proposed approach are then provided. Finally,
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to improve upon this linear matrix inequalities-based hedging approach a new adaptive control architecture
using expanded reference models is proposed. It is shown that the expanded reference model trajectories
more closely follow the trajectories of the ideal reference model as compared to the hedging approach
and through the augmentation of a command governor architecture, asymptotic convergence to the ideal
reference model can be guaranteed. To provide additional robustness against possible uncertainties in the
actuator bandwidths an estimation of the actuator bandwidths is incorporated.

Lastly, the challenge presented by the unknown physical interconnection of large-scale modular
systems is addressed. First a decentralized adaptive architecture is proposed in an active-passive modular
framework. Specifically, this architecture is based on a set-theoretic model reference adaptive control
approach that allows for command following of the active module in the presence of module-level system
uncertainties and unknown physical interconnections between both active and passive modules. The key
feature of this framework allows the system error trajectories of the active modules to be contained within a-
priori, user-defined compact sets, thereby enforcing strict performance guarantees. This architecture is then
extended such that performance guarantees are enforced on not only the actuated portion (active module) of
the interconnected dynamics but also the unactuated portion (passive module).

For each proposed adaptive control architecture, a system theoretic approach is included to analyze
the closed-loop stability properties using tools from Lyapunov stability, linear matrix inequalities, and matrix

mathematics. Finally, illustrative numerical examples are included to elucidate the proposed approaches.

bl
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CHAPTER 1: INTRODUCTION

At a high level, control design consists of two parts; mathematically model the dynamical system
(process or plant) to be controlled and design a control law based on this model to achieve some desired level
of performance. In order to obtain a feasible control law, model simplifications of the dynamical system are
typically made. This can include making idealized assumptions, linearizations of a highly nonlinear dynam-
ical system, neglecting external disturbances, and neglecting different unmodeled dynamics. In addition,
there can exist a wide array of unpredictable conditions that can create uncertainty in the actual physical
system (e.g., structural damage in aircraft and spacecraft). As a result, there unavoidably exist system
uncertainties between the control model and the actual physical system. There exist two common approaches
that can account for these system uncertainties; robust control and adaptive control. While robust control
techniques are well developed in literature (see, for example [1, 2] and references therein), they may not be
able to guarantee certain levels of performance in the presence of large system uncertainties. In addition,
since robust controllers are tuned to the worst-case possible uncertainty, they can be (overly) conservative
effecting the achievable performance in order to ensure stability. In contrast, adaptive controllers are tuned
to the physical system in real time, not a worst-case scenario (that may never happen in practice). Thus,
adaptive controllers have the natural capability to estimate and suppress the effect of system uncertainties,
without necessarily sacrificing performance.

While adaptive controllers have been used in numerous applications to provide stability and even
achieve desired levels of performance without excessive reliance on mathematical models, widespread
adoption of these adaptive control systems is limited due to their lack of a-priori, verifiable performance
and robustness guarantees. For verifiable adaptive control systems, it is necessary to have system theoretic
approaches that allow for one to check and satisfy different conditions such that the adaptive control system
is guaranteed to perform as expected with a desired amount of robustness. A selection of different challenges
for verifiable adaptive control systems are depicted in Figure 1.1 in the context of a model reference

adaptive control framework which is considered throughout this dissertation. Briefly, the design of the

www.manaraa.com



model reference adaptive control framework [3—7] has three major components — a reference model, an
update law, and the adaptive feedback control law (typically augmented to an existing nominal control
design). In this framework, a desired closed-loop system performance is captured by the reference model
such as tracking an applied command ¢(7) as in Figure 1.1. The system error given as e() between the state
of this reference model x;(7) and the state of the uncertain dynamical system x(z) is used to drive the update
law online. This then allows the control law to adapt its feedback gains using the information received from

the update law for suppressing the system error.

Interconnected
Systems”

Unmatched
Uncertainties

Unmodeled
Dynamics

Nonlinear Ref.
Models*

Unmeasurable

e(t) State

Reference Model

u(t)

Uncertain z(t)
Dynamical System

Un(t)

Nominal Control

Uy (t)

Guaranteed
Performance®

Actuator

. Adaptive Control
Dynamics

Update Law

Actuator
Nonlinearities

Processing
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Figure 1.1: Model reference adaptive control framework and verification challenges.

This dissertation focuses on the challenges denoted with the asterisk in Figure 1.1. These will be
discussed in the remaining sections, but first it should be noted that while not addressed in this dissertation,
work has also been done, some by the author of this dissertation through collaborative efforts, to address the
challenges from the presence of: unmodeled dynamics (see, for example, [8—12] and references therein),
unmatched uncertainties (see, for example, [13—19] and references therein), unmeasurable states through
output feedback control (see, for example, [15, 20, 21] and references therein), and the processing effort
of control signals through event-triggering techniques (see, for example, [22] and references therein). In
addition, there are several approaches addressing the presence of actuator nonlinearities (see, for example,

[23-34] and references therein), where this is considered as a future research direction.
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1.1 Transient Performance Improvement and Guarantees

A well-known result in adaptive control theory is that the system error can be guaranteed to asymp-
totically vanish in the presence of system uncertainties; however, there are limited (more conservative)
guarantees in the transient portion that the system error does not violate physical constraints. Thus, the
ability to obtain predictable transient performance is still an important problem to the adaptive control
field — especially for applications to safety-critical systems and when there is no a priori knowledge on
the upper bounds of the existing system uncertainties [35-38]. One way to address this problem is to
use a high-gain learning rate in the update law which minimizes the worst-case system error such that
the transient performance can be improved during the learning phase. Even though this can be justified
theoretically [6], an update law subject to a high learning rate may not always be practically feasible [39, 40],
since it can lead to control signals with high-frequency content which can result in system instability for
practical applications. To avoid this, different approaches are proposed in [41-48] that introduce additional
mechanisms to model reference adaptive control laws that capture a form of the system uncertainty in order
to suppress its effect.

In this dissertation, two approaches are presented to address this problem. The first approach is
predicated on a novel controller architecture which, unlike the work [41-48], includes modification terms
in both the adaptive controller and the update law that are constructed through a gradient minimization
procedure. In this way, the system error between an uncertain dynamical system and a given reference
model can be minimized during the learning phase of the adaptive controller. A detailed stability analysis
of the proposed approach is provided as well as a discussion of the practical aspects of its implementation.
This approach is then illustrated through a numerical example.

Motivated by the first approach, the second one similarly uses a gradient minimization procedure to
suppress more directly the effect of system uncertainty on the transient system response. To go beyond the
first approach, the second approach is modified to be computationally less expensive and it can enforce the
system error to approximately stay in an a priori given, user-defined error performance bound. In addition,
this second approach is not only developed for adaptive control laws with linear reference models, but also
generalized using tools and methods from [49], for adaptive control laws with nonlinear reference models.
It is illustrated through two numerical examples; for the linear reference model the approach is applied to

a linearized hypersonic vehicle model and for the nonlinear reference model a wing rock like example is
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considered where the pilot authority has been limited. Finally, expiremental results are included from an

application to the Quanser AERO platform [50].

1.2 Nonlinear Reference Models

While it is of common practice to use linear reference models, this can limit the achievable closed-
loop dynamical system performance — especially for applications involving highly-capable dynamical
systems such as highly-maneuverable aircraft, missiles, and space launch vehicles. This is due to the fact that
linear reference models can only approximate the desired closed-loop behavior of these nonlinear dynamical
systems in narrow regions of the state-space. Notable contributions that utilize reference models with non-
linear dynamics are presented by the authors of [51-54]. However, these approaches either consider specific
theoretical frameworks requiring restrictive assumptions or they consider specific applications which cannot
be easily generalized.

Previous work by the author [49] proposes an adaptive control architecture using nonlinear refer-
ence models, where under minimal assumptions the system error is shown to asymptotically vanish. As
mentioned in the previous section the second gradient minimization based approach is generalized using
the adaptive control architecture in [49], but it goes beyond by enforcing performance bounds during the

transient-time.

1.3 Actuator Dynamics

As already mentioned, while addressing system uncertainties, the presence of unmodeled dynamics
are often neglected in the modeling process for model reference adaptive control designs. A practical form
of unmodeled dynamics, which is present in every physical system, is the actuator dynamics. Typically, the
effect of the actuators are neglected using the assumption that the actuator dynamics have sufficiently high
bandwidth. Yet, if the bandwidths of each actuator channel are not sufficiently large, then the closed-loop
system trajectories may not behave close to the reference model trajectories and, importantly, the stability
of the closed-loop system can be lost. Thus, from a verification standpoint, additional steps are necessary
to show the allowable bandwidth range of the actuator dynamics for safety-critical and human-in-the-loop
applications such that the adaptive control algorithms correctly suppress the system uncertainties.

The authors of [55-57] propose approaches that allow the design of model reference adaptive

controllers in the presence of actuator dynamics. These works include the actuator dynamics in the uncertain
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dynamical system such that the resulting closed-loop dynamical systems is analyzed. However, this can
result in imprecise estimation of the system uncertainties for the suppression of their effects. The authors of
[58] investigate how slow the actuator dynamics need to become before the closed-loop stability is negatively
effected for a scalar system. In addition, they then propose different modifications to the control law to
provide additional robustness when the actuator dynamics are not sufficiently fast. The authors of [30-33]
propose a well-respected practical approach in the aerospace engineering field known as (pseudo-control)
hedging. In particular, based on a given reference model capturing a desired closed-loop dynamical system
performance, the hedging approach alters the trajectories of this model enabling adaptive control laws to
be designed such that their stability is not affected by the presence of actuator dynamics. However, it is
not analyzed that this modification to the reference model dynamics does not yield to unbounded reference
model responses.

In this dissertation, several results for the actuator dynamics problem are presented. First, an
approach to compute stability limits for model reference adaptive control laws for uncertain dynamical
systems in the presence of high-order actuator dynamics is proposed. This approach, termed an LMI-
based hedging approach, modifies the ideal reference model dynamics to allow for correct adaptation in the
presence of high-order actuator dynamics. To compute the stability limit of the modified reference model,
LMIs are used such that this computation reveals the fundamental stability interplay between the parameters
of the actuator dynamics and the allowable system uncertainties. In addition, the distance between the
modified reference model trajectories and ideal reference model trajectories are analyzed, and a condition
for which these trajectories converge to each other is provided. These results are illustrated through a
numerical example.

Second, additional extensions of this LMI-based hedging approach are provided. Specifically, three
generalizations are considered for a class of uncertain nonlinear dynamical systems, unmeasurable actuator
outputs, and actuator dynamics with an additional throughput term. In addition, for the actuator dynamics
with an additional throughput term, an application for the input time-delay problem is presented. Further-
more, the method of computing the actuator parameters is more thoroughly addressed and an application to
a hypersonic vehicle model for different cases of pole-zero actuator dynamics is presented.

Third, an improved adaptive control architecture to the LMI-based hedging approach is presented.
While computing the stability limits is an important result for the presence of actuator dynamics, the LMI-

based hedging approach modifies the ideal reference model such that it is limited to achieving bounded
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controlled system trajectories around a neighborhood of this model capturing a desired closed-loop system
performance. This improved adaptive control architecture uses expanded reference models allows the
trajectories of the uncertain dynamical system to follow the trajectories of the expanded reference model
that are shown to remain predictably close to the trajectories of the ideal reference model, as compared to the
LMI-based hedging (and pseudo-control hedging) approach. In addition, a command governor architecture
is augmented with the proposed expanded reference model in order to achieve asymptotic convergence of
the expanded reference model trajectories to those of the ideal reference model such that the desired closed-
loop system performance can be captured. To provide (additional) robustness against possible uncertainties
in the actuator bandwidths an estimation of the actuator bandwidths is incorporated. This approach is also

illustrated with a numerical hypersonic vehicle example.

1.4 Interconnected Systems

The design and implementation of decentralized architectures for controlling complex large-scale
systems is a nontrivial control engineering task involving the consideration of components interacting with
the physical processes to be controlled. Specifically, large-scale systems are characterized by a large number
of highly-coupled heterogeneous components exchanging matter, energy, or information. Examples of such
systems include but are not limited to network systems, power systems, communication systems, process
control systems, water systems, highway systems, and air traffic control systems (see, for example, [59, 60]
and references therein). An important class of large-scale systems is modular systems in which there exists
a physical interconnection between modules. A major challenge in the control of modular systems is associ-
ated with the unknown physical interconnections between modules and module-level system uncertainties.

To this end, the authors of [61-73] propose notable adaptive control approaches to suppress the
effect of such uncertainties providing an effective control design methodology for large-scale modular
systems. However, these approaches require all modules of a large-scale system to be controlled, which
may not be possible especially for highly complex large-scale modular systems. For example, there may
exist a specific subset of modules in practice that cannot be accessed or some of the modules can be subject
to actuator failures in that it may not be possible to drive such modules through control signals. In this case,
the set of modules that cannot be driven by control signals affect the others as unmodeled dynamics.

This dissertation presents a new decentralized adaptive control architecture for large-scale modular

systems using an active-passive framework. Here, active modules refer to modules that receive a control
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signal and passive modules are modules that do not receive a control signal. Specifically, extending a set-
theoretic adaptive control approach developed in [74], an adaptive decentralized control law is designed for
each active module such that they can each effectively perform their individual objective in the presence
of module-level system uncertainties and unknown physical interconnections between other active modules
and passive modules. This framework allows the system error trajectories of the active modules to be
contained within a-priori, user-defined compact sets, thereby strict performance guarantees are enforced.
This result is also significant from the transient improvement perspective noted in Section 1.1. The efficacy
of the proposed decentralized adaptive control architecture is demonstrated with an illustrative numerical
example.

An extension of this result is also presented in which the control and performance enforcement for
a class of uncertain dynamical systems consisting of actuated (active) and unactuated (passive) portions that
are physically interconnected to each other is considered. In this extension, performance guarantees are
enforced on not only the actuated portion of the interconnected dynamics but also the unactuated portion by
means of the physical interconnection with the actuated portion of the dynamics. Specifically, the proposed
approach stabilizes the overall interconnected system in the presence of unknown physical interconnections
as well as system uncertainties. For enforcing performance guarantees, the set-theoretic model reference
adaptive control approach is also adopted to restrict the respective system error trajectories of the actuated
and unactuated dynamics inside a-priori, user-defined compact sets. In addition, drawing upon the work
done for the actuator dynamics problem discussed in Section 1.3, the proposed extension uses LMIs to
verify stability of appropriate control parameters as well as the allowable system uncertainties and unknown
physical interconnections. An illustrative numerical example is included to demonstrate the efficacy of the

proposed approach.

1.5 Organization

The organization of this dissertation is as follows. Chapter 2 presents a model reference adaptive
control approach predicated on a gradient optimization procedure to improve the transient response. This
is generalized in Chapter 3 to enforce performance guarantees and allow for the use of nonlinear reference
models. Chapter 4 presents the LMI-based hedging approach for high-order actuator dynamics and Chapter
5 provides generalizations and applications of this approach. In Chapter 6, an adaptive control architecture

using expanded reference models is presented for the actuator dynamics problem. Chapter 7 introduces a set-
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theoretic decentralized adaptive control architecture for large-scale active-passive modular systems, where
performance guarantees are enforced on the active modules. In Chapter 8 an extension is made to enforce
performance guarantees not only on the active module (actuated dynamics) but also on the passive module

(unactuated dynamics). Finally, concluding remarks and possible future research directions are presented in

Chapter 9.
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CHAPTER 2: ON TRANSIENT PERFORMANCE IMPROVEMENT OF ADAPTIVE CONTROL
ARCHITECTURES'

While adaptive control theory has been used in numerous applications to achieve given system
stabilization or command following criteria without excessive reliance on mathematical models, the ability
to obtain a predictable transient performance is still an important problem — especially for applications
to safety-critical systems and when there is no a priori knowledge on upper bounds of existing system
uncertainties. To address this problem, we present a new approach to improve the transient performance of
adaptive control architectures. In particular, our approach is predicated on a novel controller architecture,
which involves added terms in the update law entitled artificial basis functions. These terms are constructed
through a gradient optimization procedure to minimize the system error between an uncertain dynamical
system and a given reference model during the learning phase of an adaptive controller. We provide a
detailed stability analysis of the proposed approach, discuss the practical aspects of its implementation, and

illustrate its efficacy on a numerical example.

2.1 Introduction

Progress in adaptive control has been made to obtain desirable tracking and stabilization specifica-
tions while relaxing dependency on model accuracy. One of the challenges in adaptive control is to obtain a
predictable transient performance [35-38]. One way to address this problem is to use a high-gain learning
rate in the update law which minimizes the worst-case system error between an uncertain dynamical system
and a given reference model to guarantee transient performance improvement during the learning phase.
Even though this can be justified theoretically (see, for example, [6]), an update law subject to a very high
learning rate is not practically feasible [39, 40], since it can lead to control signals with high-frequency
dynamical system content (i.e., oscillations and high-levels of measurement noise) that can violate actuator

limits [31] and excite unmodeled dynamics [8] — resulting in system instability for practical applications.

I'This chapter is previously published in [75]. Permission is included in Appendix B.
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The authors in [76] and [77] present high-gain adaptive controllers to subvert high-frequency dynamical
system content in the control signals so that their approaches become practically feasible. Even though
these approaches are promising, they require the knowledge of a (conservative) upper bound on the unknown
constant gain appearing in their uncertainty parameterization. While this upper bound may be available for
some applications, the actual upper bound may change and exceed its conservative estimate, for example,
when an aircraft undergoes a sudden change in dynamics as a result of reconfiguration, deployment of a
payload, docking, or structural damage [78]. In such circumstances, the performance of these adaptive
controllers may be poor, because tuning them online with a new upper bound is not possible. Furthermore,
the performance of these adaptive controllers in the face of high uncertainty levels may not be satisfactory
as well, because both controllers converge to a standard adaptive controller as the upper bound on the
unknown constant gain becomes arbitrarily large (see, for example, Section 2.1.2 of [76] and Section 4
of [77]). Therefore, it is important to achieve transient performance guarantees when there is no a priori
knowledge on such uncertainty upper bounds.

In this paper, we present a new approach to improve the transient performance of adaptive control
architectures. In particular, our approach is predicated on a novel controller architecture, which involves
added terms in the update law entitled artificial basis functions. These terms are constructed through a
gradient optimization procedure to minimize the system error between an uncertain dynamical system and
a given reference model during the learning phase of an adaptive controller — without requiring a priori
knowledge on upper bounds of existing system uncertainties. The proposed approach is a theoretical and
practical generalization of the method presented in [79]. Theoretically, this paper provides a stability
analysis that holds for a larger class of uncertain dynamical systems. Practically, it should be noted that
the method in [79] requires the differentiation of the system error, however this paper provides further
results to highlight how to implement the proposed approach without this requirement, which is important
for real world applications. We provide a detailed stability analysis of the proposed approach, discuss the
practical aspects of its implementation, and illustrate its efficacy on a numerical example. Although this
paper considers a particular adaptive control formulation, namely model reference adaptive control, the
presented approach can be used in a complimentary way with many other approaches to adaptive control.

The notation used in this paper is fairly standard. Specifically, R denotes the set of real numbers,
R”" denotes the set of n x 1 real column vectors, R" denotes the set of n x m real matrices, R, (resp. R,)

denotes the set of positive (resp. non-negative-definite) real numbers, R’}"" (resp. @T") denotes the set of

10
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n X n positive-definite (resp. non-negative-definite) real matrices, S"*” denotes the set of n X n symmetric
real matrices, D" denotes the set of n x n real matrices with diagonal scalar entries, ()T denotes transpose,
()~ denotes inverse, tr(-) denotes the trace operator, and ‘=’ denotes equality by definition. In addition
we write Amin(A) (respectively Amax(A)) for the minimum and respectively maximum eigenvalue of the
Hermitian matrix A and det(A) for the determinant of the Hermitian matrix A. We also use || - || for the
Euclidian norm, || - ||« for the infinity norm, and || - | for the Frobenius matrix norm. Futhermore, for the
signal x(¢) = [x;(t),x2(t),...,x,(¢)]" € R" defined for all # > 0, the truncated L.. norm and the L., norm are
defined as |[x; ()| 2., & max;<i<p(supg< < [xi(r)]) and ||x(1)|| 2. £ maxi<i<p(sup,sq |xi(r)]), respectively.
The organization of this paper is as follows. Section 2.2 considers a particular adaptive control
formulation, namely model reference adaptive control, and presents the preliminaries associated with this
framework. Section 2.3 introduces the proposed artificial basis function approach to model reference
adaptive control and then provides performance improvement and stability results in detail. We discuss
the practical aspects of the proposed approach in Section 2.4 and present an illustrative example in Section

2.5. Conclusions are summarized in Section 2.6.

2.2 Mathematical Preliminaries

Consider the uncertain dynamical system given by

x(t) = Ax(t)+Bu(t)+D8(x(t)), x(0)=xo, 2.1

where x(¢) € R" is the state vector available for feedback, u(r) € R™ is the control input, d : R” — R™ is an
uncertainty, A € R"*" is a known system matrix, B € R"*™ is an unknown control input matrix, D € R™*"
is a known uncertainty input matrix, and the pair (A, B) is controllable. As standard, we assume that the

uncertainty in (2.1) can be parameterized as
5x) = Wlo(x), xeR", (2.2)

where W € R is an unknown weight matrix and o : R" — R® is a known basis function of the form

o(x) = [01(x),02(x),...,04(x)]T, and the unknown control input matrix satisfies
B = DA, (2.3)
where det(DTD) # 0 and A € R N D™*™ is an unknown control effectiveness matrix.

11
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Next, consider the reference system capturing a desired closed-loop dynamical system performance

given by
Xr(t) = Arxr(t) JFBrC(t)a xr(O) = X0, (2.4

where x, (1) € R" is the reference state vector, ¢(t) € R™ is a given uniformly continuous bounded command,
A; € R is the Hurwitz reference system matrix, and B, € R"*™ is the command input matrix. The
objective of the model reference adaptive control problem is to construct a feedback control law u(¢) such
that the state vector x(¢) asymptotically follows the reference state vector x;(¢) subject to (2.2) and (2.3).
For the purpose of stating the preliminaries associated with the model reference adaptive control

problem, consider the feedback control law given by
u(t) = Mn(t)+ua(t)7 (2.5)

where u,(¢) € R™ is the nominal feedback control law and u,(7) € R is the adaptive feedback control law.

Additionally, let the nominal feedback control law be given by
() = Kuix(t) +Kaclt), (2.6)

where K € R™*" and K, € R™*™ are the nominal feedback and the nominal feedforward gains, respectively,

such that A, = A+ DK, B; = DK, and det(K3) # 0 holds. Now, using (2.5) and (2.6) in (2.1) yields
x(t) = Awx(t)+Bic(t) + DAluy(t) + Wy 0(x(t)) + W, un (2)], (2.7)

where We = WA™! € R®™ and W, £ [I — A~'] € D™ are unknown.
Motivating from the structure of the uncertain terms appearing in (2.7), let the adaptive feedback

control law be given by

uy(t) = —Wr(t)o(x(t)) —Wrlun(r), (2.8)

12
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where W () € R*™ and W, (1) € R™*™ are the estimates of W and W,_, respectively, satisfying the weight

update laws

Wo(t) = 7Y50(x(t)e’(1)PD, Ws(0) = Wqo, (2.9)
W) = Yuun(t)e (0)PD, W, (0) = Wao, (2.10)

where 15 € RV NS and 3, € R NS™ ™ are the learning rate matrices, e(t) = x(¢) — x.(t) is the

system error state vector, and P € R N S"*" is a solution of the Lyapunov equation
0 = A'P+PA +R, (2.11)

with R € R N S"*". Note that because A, is Hurwitz, it follows from the converse Lyapunov theory [80]
that there exists a unique P satisfying (2.11) for a given R.

Now, using (2.8) in (2.7) yields
#(t) = Awx(t)+Bic(t) = DAIWZ (1) (x()) + WL (1)un ()], (2.12)
and the system error dynamics is given using (2.4) and (2.12) as
1) = Awe(t)—DAWI(1)o(x(t)) + WL (un(t)], e(0) = e, (2.13)

where Wy (1) 2 Wy (t) — Wy € R and W,_(t) £ W, (1) — W, € R™™,

Remark 2.2.1 The weight update laws given by (2.9) and (2.10) can be derived using Lyapunov analysis

by considering the Lyapunov function candidate (see, for example, [81])
V(eWo, W) = e"Petyy'tr WoA/2)T(WoA?) 9,1 tr (W, AV T (W, AY?). (2.14)

Note that V(0,0,0) = 0 and V(e,Ws, W, ) > 0 for all (e,Ws,W,, ) # (0,0,0). Now, differentiating (2.14)

vields
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V(e(t),Wo(t), W, (t)) = —e'(t)Re(t)—2e" (t)PDAW, ()0 (x(t)) —2¢" (t)PDAW,. (t)un(t)

121 W () W (1) A+ 200 W (1), Wi (1)A, (2.15)

where using (2.9) and (2.10) in (2.15) results in

V(e(1),Wo(t),W,, (1)) = —e'(t)Re(r) <O. (2.16)

Since (2.16) holds, it follows from (Theorem 3.1, [80]) that the solution (e(t), Ws(t), W, (t)) of the closed-
loop dynamical system is Lyapunov stable for all initial conditions and t € Ry. This implies that the
terms e(t), Ws(t), W, (t)), o(x(t)), and u,(t) are bounded in (2.13), and hence, é(t) is bounded for all
t € R,. Furthermore, since V(e(t),Wq(t),W,, (t)) = —2e(¢t)Ré(t), the boundedness of é(t) results in the

boundedness of V(e(t),Wg(t), W, (t)). It now follows from Barbalat’s lemma (Lemma 4.1, [80]) that

lim V(e(), Ws (t), W,,, (1)) = 0, (2.17)

t—o0
which consequently shows that e(t) — 0 as t — oo.

Remark 2.2.2 For the case when the nonlinear uncertain dynamical system given by (2.1) includes bounded
exogenous disturbances, measurement noise, and/or the uncertainty in (2.1) cannot be perfectly parameter-

ized, then (2.2) can be relaxed by considering
8(t,x) = W()To(x)+e(t,x), x€D, (2.18)

where W (t) € R¥™ is an unknown time-varying weight matrix satisfying |W(t)||[r < w and |W(1)||r < W
withw € Ry and w € R being unknown scalars, o : D, — R’ is a sufficiently approximated basis function
on x € D, using universal approximation tools such as neural networks, € : R, x Dy — R™ is the system
modeling error satisfying ||€(t,x)||2 < € with € € Ry being an unknown scalar, and D, is a compact subset

of R™. In this case, the weight update laws given by (2.9) and (2.10) can be replaced by

Wolt) = YProj[Wol(r), o(x(t))e' (1)PD], Wos(0) = Woo, (2.19)
Wi (6) = Y Proj[Wi, (1), un(t)e" (1)PD], Wi, (0) = W0, (2.20)
14
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to guarantee the uniform boundedness of the system error state vector e(t) and the weight errors W (t) and

W, (t), where Proj denotes the projection operator [82].

Even though Remark 2.2.1 highlights that x(¢) asymptotically converges to x.(¢), x(z) can be far
different from x(¢) during the transient time (i.e., the learning phase of the adaptive controller). To address
this problem, we introduce the artificial basis function approach in the next section for transient performance

improvement.

2.3 Artificial Basis Functions for Transient Performance Improvement

In this section, we develop a new approach entitled artificial basis functions to improve the transient
performance of the model reference adaptive control framework introduced in Section 2. In order to

introduce our approach, we first write
é(t) = Are(t)+DA[uy(t) +Wao (x(t) + W, un(1)],  e(0) = eq. (2.21)
using (2.4) and (2.7). Next, we add a new term “W, 6, (¢)” to (2.21) as
é(t) = Are(t) +DA[ua(t) +Wg o(x(t)) + Woun(t) + W, 04(2)], e(0) = e, (2.22)

where we set W, = 0 in this term so that (2.21) and (2.22) are equivalent. Since the added term “WaT 0, (1) is
zero by definition and it does not change the error dynamics, we call W, € R"*4 as the artificial weighting
and 0,(t) € RY as the artificial basis function. Considering (2.22), we now let the new adaptive feedback

control law be
(1) = —Wg(0)o(x(t)) =Wy (t)un(t) = W, (1)0a(t), (2.23)
with W, (1) € R"*4, which yields
(1) = Awe(t) = DA[Wg (1)o(x(1)) + W, ()un(t) + W, (1) 0u(t)],  €(0) = e, (2.24)

where Wq (1) 2 W (1) — Ws € RS W, () 2 W, (t) — W, € R™" and W,(1) £ W,(t) — W, € R"™* (note

that W,(¢) = W,(z) since W, = 0). In the rest of this section, we choose the update laws for the artificial
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basis function o,(¢) and the artificial weight update law W, (¢) in the proposed adaptive feedback control
law (2.23) in order to improve the transient performance without sacrificing the asymptotic stability of the
closed-loop system error dynamics in (2.24). To this end, the following two theorems present the main

results of this section.

Theorem 2.3.1 Consider the system error dynamics given by (2.24) and the artificial basis function update

law given by
Ga(t) = kW,(t)(D'D)'D"[e(t) —Are(t)], 0a(0) = 040 #0O. (2.25)
where k € R. Then, (2.25) is constructed through the negative gradient of
IO = IAWEO(0) + W (o) + W@ o) .26

with respect to G,(t).

Proof. Consider the cost function given by (2.26) and note that its gradient with respect to o,(¢) has

the form

= —Wa(O)A[Wg ()0 (x(1)) + Wb un(t) + W, (1) 0u(1)] (2.27)

since W, = 0. Using the idea presented in [46, 83, 84], we now construct the update law for the artificial
basis function as
[-T()]
d0,(t)
= —kWa(t)A[Wg (t)o (x(t)) + W, un(t) + W, (1)0a(t)], 0a(0) = Ouo. (2.28)

G.(t) = k

Here, one can notice that (2.28) has unknown terms (i.e., A is unknown and the first two terms inside the
brackets are unknown since Wy € R and W, € R™ ™ are unknown in W (t) = W5 (t) — Ws € RS

and W, (t) = W, (t) —W,, € R™™ respectively), and hence, it can not be implemented. To address this
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problem, (2.24) can be rewritten as

—A[W3 ()0 (x(t) + W, un(t) + W, () 0a(t)] = (D'D)"'D'[e(t) —Are(t)]. (2.29)
Since (2.28) along with (2.29) leads to the artificial basis function update law given by (2.25), it follows that

(2.25) is the negative gradient of (2.26). |

Remark 2.3.1 The unknown magnitude of the mismatch term
We (1)0 (x(2)) + Wi ttn (1) + W, (1) 0 (1), (2.30)

in (2.24) can lead to a large deviation of the state from the reference state during the learning phase of the
adaptive controller given by (2.23). From this standpoint, the proposed artificial basis function allows to
shape the system error by suppressing the mismatch term (2.30) in (2.24) due to gradient optimization, since
it is constructed to be the negative gradient of (2.26) with respect to C,(t) (see, for example, [46, 83, 84]
and references included therein on other applications of gradient optimization in the context of adaptive
control). Therefore, by adjusting k in (2.25), the uncertain dynamical system response and the reference

system response can be made close to each other for all time including the transient phase.

Remark 2.3.2 Even though the artificial basis function update law given by (2.25) has the time derivative
of the system error on its right hand side, we will see in Corollary 2.4.1 of the next section that we can use

an equivalent form of this update law without requiring this time derivative for real-world applications.

In Theorem 2.3.1, we developed an update law for the artificial basis function in order to improve
the transient performance of the system error dynamics. In the next theorem, we choose an appropriate
artificial weight update law W, (¢) (and also update laws for Wy () and W, (¢)) to guarantee the asymptotic
stability of the closed-loop system error dynamics in (2.24). We will also show the transient performance

bounds satisfied by the system error dynamics.

Theorem 2.3.2 Consider the nonlinear uncertain dynamical system given by (2.1), the reference system

given by (2.4), the feedback control law given by (2.23) along with the update laws given by (2.25) and
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5(1) = %[00 (VP +po(x(0)oL (OWL(N)],  We(0) = Woo, (231)

Vo (1) = % [un(z)eT(t)PD+uun(t)og(z)wa(z)}, Wi (0) = Woo, (2.32)
Wa(t) = 7%0a(1)e"(t)PD, Wy(0) = Wy #0, (2.33)

where Y5 € R, 7, € Ry, 1 € Ry, and u € R Then, the solution (e(t),Ws(t),W,, (), Wa(t), 0a(t)) of the
closed-loop dynamical system is Lyapunov stable for all initial conditions andt € R, and lim; .. e(t) = 0.

In addition, the system error dynamics satisfy the transient performance bounds given by

le)]lz. < &/ Amin(P), (2.34)
where
€ 2 Anax (P)[|e(0) 15 + 75 | Woo A 2I[E + %5, Wi A2 [E + 15 I Wao A2 IR+ 5 0a(0)]3. (2.39)
Proof. Consider the Lyapunov function candidate given by

V(e,Wo, Wi, Wy 02) = €TPety; "t (WoAl/2)T (WoA2) 4y e (W, AV/2)T (W, A12)

1 (WA (WoA2) 4kt o 6, (2.36)

where 1(0,0,0,0,0) = 0 and V(e,Wg, W, ,Wa, 0,) > 0 for all (e, Ws, W, ,Wa,0,) # (0,0,0,0,0). It follows

that

V(e(t), Wo (1), Wa, (1), Wa(1), 0u(t))
= 2T (1) Pé(1) + 275 ' tr W (1) AW (1) + 29 tr Wi, (1) AW, (£)
+2, e W (1) AWa (1) + 2k~ o ()64 (1)
= —e' (t)Re(t) — 210, (t)Wa (1) AW, (1) 0a(1)

< —e"(1)Re(t) <0, teR,, (2.37)

which guarantees that (e(t), W (1), W, (t),Wa(t), 0a(t)) is Lyapunov stable, and hence, is bounded for all

t €R,. Since 6(x(t)), un(t), and o,(¢) are bounded for all # € R, , it follows from (2.24) that ¢é(¢) is bounded,
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and hence, V(e(t),Ws(t),W,, (t),Wa(t),04(t)) is bounded for all + € R,. Then according to Barbalat’s

lemma

lim V(e(t), Ws(t), W, (t), Wa(t),0a(t)) = 0, (2.38)

t—ro0

which consequently shows that e(t) — 0 as 7 — oo.

Additionally, because V(e(t), W5 (t), Wy, (), Wa(t),0a(t)) < 0 for € R, this implies that

Ve(t),Ws(t), Wy, (), Wa(t), 0a(t)) < V(e(0), Wo0, Wa,0, Wao, 6a(0))- (2.39)

Then using the inequalities

Auin (P)[[e(1) |13 < V(e(1), Wo (1), Wa, (), Wa(1), 0(1)) (2.40)
and

V(€(0), Wo0, W0, Wao, 0a(0)) < Amax(P)l|e(0) 13 + 75 WooA 21+ %, | Wig A"/ 2

0 [ Wao A2 &+ k[0 (0) 3 (2.41)
in (2.39) results in
le@l2 < v/ Amin(P)- (2.42)
Since ||+ [|lo < || - ||2, and this bound is uniform, then (2.42) yields
lec(lle. < V&/Amin(P) (2.43)
therefore, (2.34) is a direct consequence of (2.43) because (2.43) holds uniformly in 7. |

2.4 Practical Considerations

In Theorem 2.3.1 of the previous section, it is noted that (2.25) presents the update law for the

artificial basis function that contains the time derivative of the system error in its right hand side. In practice,
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it is desired to remove this term from the update law. Motivating from the methods used in [85], the next
corollary presents an equivalent form of the update law in (2.25), but without the time derivative of the

system error.

Corollary 2.4.1 The update law for the artificial basis function given by (2.25) is identical to

6u(t) = 6,(0)+k ( (1)(DTD)~ 1DTe(r)—vi/a(o)(DTD)*IDTe(o)) (2.44)
/ %.0.(7)eT (7)PD(D'D) " 'DTe(1)dT — / Wa(7)(DTD)'D Ae(t )d]

Proof. To show that (2.25) is equivalent to (2.44), we first integrate both sides of (2.25) as

'do,
o drt

dr = k!/otWa(T)(DTD)1DTdil(:)dT—/OtWa(T)(DTD)1DTAre(T)dT], (2.45)

where k is constant. The first term on the right hand side of (2.45) can then be manipulated using integration

by parts of the form

/UdV = UV—/dUV, (2.46)

with U = W,(7)(DTD)~'DT and V = e(t), and respectively dU = Wa(f)(DTD)_IDTd’C and dV = dfi(:)dr.

This produces an equivalent term of the form
A A 4 A
Wa(2)(D'D)'DTe(r) — W,(0)(D™D) 'De(0) — / Wa(7)(D'D) "D e(7)dr, (2.47)
0
that does not contain the time derivative of the system error. We can further expand this using (2.33) as
Wa(2)(D™D)"'DTe(t) — W,(0)(D™D)'DTe( / %.0.(7)e’ (7)PD(D'D) " 'De(7)dr.  (2.48)

Using (2.48) instead of the first term on the right hand side of (2.38) and integrating the left hand side yields
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Cu(t) — 0,(0) = k[(Wa(t)(DTD)_lDTe(t)—Wa(O)(DTD)_'DTe(O))
- /0 146 (1)eT (1) PD(DT D)~ De(1)de

_ /O "Wa(2)(DTD) "' DT Are(t)dz | (2.49)

Adding the initial condition 6,(0) to both sides concludes the proof. |

Since the update law of the artificial basis function given by (2.25), or equivalently (2.44), is derived
through a gradient optimization procedure, it may (or may not) induce oscillations to the system response
as the value of k gets large. Even though we did not observe such a oscillative system response in the
illustrative example of the next section (as well as in applications to various uncertain dynamical systems);
if such a situation happens, then it is of practical importance to robustify the proposed approach against
such oscillative (i.e., high-frequency) dynamical system content. To this end, one can adopt, for example,
the low-frequency learning idea of [35] to achieve both improved transient performance and smooth system

behavior. This is highlighted in the next corollary.

Corollary 2.4.2 Consider the nonlinear uncertain dynamical system given by (2.1), the reference system
given by (2.4), the feedback control law given by (2.23) along with the weight update laws given by (2.31),
(2.32), (2.33),

Ga(t) = KkWa(t)(D'D) 'DT[e(t) — Are(t)] —c1(0a(t) — Our(t)), (2.50)
and

Gult) = —ca(ou(t) — oalt)), (2.51)

where ¢| € Ry, and ¢; € Ry. Then the solution (e(t),Wq(t), W, (t),Wa(t), 0a(t), 0xt(t)) of the closed-loop
system given by (2.24), (2.31), (2.32), (2.33), (2.50), and (2.51) is Lyapunov stable for all initial conditions

andt € Ry, and lim, .. e(t) = 0.
Proof. Considering the Lyapunov function candidate given by
V(eWo Wiy WrOus0) = € Pet 35t (Worl2) T (WoA2) 5 tr (W, A12)T (1, A12)

+y (WaAl/z)T(WaAl/2)+Hk_lG;rGa+C2_]‘I.Lk_1C1G;l;Gaf, (2.52)
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where V(0,0,0,0,0,0) = 0 and V(e, W, W, , Wa, s, Ga) > 0 for all (e, We, W, , Wy, Ga, Gar) # (0,0,0,0,0,0).
Differentiating (2.52) along the closed-loop system trajectories of (2.24), (2.31), (2.32), (2.33), (2.50), and

(2.51) yields
V(e(1), Wo (1), Wa, (1), Wa(1), 0a(1), 0us()) = —e" (t)Re(t) — 210, (1)Wa(£) AW, (1) 03 (1)
—2pk ™ e1(04(t) — 0u(1)) T (0u(t) — 0ur(1))
< —e'(t)Re(t) <0, r€R,. (2.53)

Hence it is guaranteed that the closed-loop dynamical system given by (2.24), (2.31), (2.32), (2.33), (2.50),
and (2.51) is Lyapunov stable, and therefore bounded for all ¢ € R,.. Since o(x(t)), uy(t), and o,(t) are
bounded for all # € R, it follows from (2.24) that ¢(¢) is bounded, and hence, V(e(t), W (t), W, (), Wa(t),

0a(t), 04t(t)) is bounded for all # € R . It then follows from Barbalat’s lemma that

1im ¥ (e(t), We (1), W, (1), Wal0), 0a(1), (1)) = O, (2.54)
which consequently shows that e(¢) — 0 as t — oo. [

It should be noted that using similar steps highlighted in Corollary 2.4.1, (2.50) can be equivalently

written as

Gu(t) = 0.(0)+k (Wa(t)(DTD)‘lDTe(t)—Wa(O)(DTD)‘lDTe(O)>

/ %:.0,(7)e’ (7)PD(D'D) " 'DTe(t)dT — / Wa(7)(D'D) "' DT Ae( )d]

_ /O c1(64(7) — oui(7))d, (2.55)

without the time derivative of the system error.

Remark 2.4.1 Following the discussion stated before Corollary 2.4.2, the added term to the right hand side
of (2.50) (or equivalently (2.55)) filters out possible high-frequency dynamical system content in 0,(t) (while
preserving asymptotic stability of the system error dynamics) as one increases the design parameter c; for
driving the trajectories of 0,(t) closer to the trajectories of Gu(t). Note that the frequency content of such
possible high-frequency oscillations that one desires to suppress is defined through the design parameter
¢y in (2.51), which denotes the bandwidth of O (t) (we refer to [35] for additional technical details and

discussions).
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2.5 Illustrative Example

In order to illustrate the proposed adaptive control architecture based on artificial basis functions,

consider the nonlinear dynamical system representing a controlled wing rock dynamics model given by

X](t> = x2(t)a x1(0>:07 (2.56)

B = Au(t)+8(x(r), x(0)=0, (2.57)

where x; represents the roll angle in radians and x; represents the roll rate in radians per second. In (2.57),
O(x) represents an uncertainty of the form 8(x) = ox; + 0pxy + 03 |x1|x2 + o |xa|x, + 065x?, where «;,
i=1,...,5, are unknown parameters that are derived from the aircraft aerodynamic coefficients. For our
numerical example, we set @; = 0.1414, ap = 0.5504, az = —0.0624, a4 = 0.0095, a5 = 0.0215, and
A =0.5. We choose K| = [—0.16,—0.57] and K, = 0.16 for the nominal controller design that yields to a
reference system with a natural frequency of @, = 0.40 rad/s and a damping ratio { = 0.707. For the standard
adaptive controller design given by (2.5), (2.6), (2.8), (2.9), and (2.10)), 6 (x) = [x1, x2, |x1[x2, |x2|x2, xﬂT
is used for the basis function and we set R = I,. For the proposed adaptive controller design given by (2.5),
(2.6), (2.23), (2.31), (2.32), (2.33), and (2.44), we use the same basis function and R as well as g =1 is
chosen implying the artificial basis function is one-dimensional.

Figures 2.1-2.6 compare the standard control design with the proposed design for a given square-
wave tracking command. In particular, Figures 2.1-2.3 show the standard model reference adaptive control
design with adaptation gains of ¥5 = 7, = 0.5, 10, and 50, respectively. The higher adaptation gain used in
Figure 2.3 yields to a better system performance pertaining to the roll angle, but it is not acceptable due to
the oscillative content in the roll rate response and the control response. Figures 2.4-2.6 show the proposed
design with the smallest adaptation gain used for the standard design, i.e., Y5 = 0.5. As we increase k from
5 to 25, and then 25 to 100, these figures clearly highlight the improvement on the transient performance
due to the nature of gradient optimization. In other words, the results with the proposed adaptive controller

design, especially the ones in Figures 2.5 and 2.6, are superior as compared with the standard ones.
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Figure 2.1: Standard adaptive control performance with (2.5), (2.6), (2.8), (2.9), and (2.10) for a given
square-wave tracking command (Y = 0.5 and 7, = 0.5).
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Figure 2.2: Standard adaptive control performance with (2.5), (2.6), (2.8), (2.9), and (2.10) for a given
square-wave tracking command (Y5 = 10 and 7, = 10).
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Figure 2.3: Standard adaptive control performance with (2.5), (2.6), (2.8), (2.9), and (2.10) for a given

square-wave tracking command (Y5 = 50 and 7, = 50).
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Figure 2.4: Proposed adaptive control performance with (2.5), (2.6), (2.23), (2.31), (2.32), (2.33), and
(2.44) for a given square-wave tracking command (WaO =01,00=01,%=057v%=1n=1Lk=5,

and u =1).
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Figure 2.5: Proposed adaptive control performance with (2.5), (2.6), (2.23), (2.31), (2.32), (2.33), and (2.44)
for a given square-wave tracking command (Wao =0.1,000=0.1 9% =05, %,=1 %=1, k=25, and

u=1).
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Figure 2.6: Proposed adaptive control performance with (2.5), (2.6), (2.23), (2.31), (2.32), (2.33), and (2.44)
for a given square-wave tracking command (Wao =0.1,0,0=0.1,7%=05 % =1 %=1 k=100, and

u=1.
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2.6 Conclusion

To contribute to the previous studies in adaptive control theory, we investigated a new approach
based on artificial basis functions. Specifically, we showed that these functions, which are constructed
based on gradient optimization, can improve the transient response of an adaptively controlled system, and
hence, can be used to achieve predictable closed-loop system performance. We further discussed in detail
regarding the practical aspects of the proposed design and included a detailed illustrative example. Future
research will include extensions to uncertain dynamical systems with limited state information (i.e., output

feedback adaptive control), state constraints, and control constraints.
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CHAPTER 3: DIRECT UNCERTAINTY MINIMIZATION FRAMEWORK FOR SYSTEM
PERFORMANCE IMPROVEMENT IN MODEL REFERENCE ADAPTIVE CONTROL!

In this paper, a direct uncertainty minimization framework is developed and demonstrated for
model reference adaptive control laws. The proposed framework consists of a novel architecture involving
modification terms in the adaptive control law and the update law. In particular, these terms are constructed
through a gradient minimization procedure in order to achieve improved closed-loop system performance
with adaptive control laws. The proposed framework is first developed for adaptive control laws with linear
reference models and then generalized to adaptive control laws with nonlinear reference models. Two
illustrative numerical examples and experimental results are included to demonstrate the efficacy of the

proposed framework.

3.1 Introduction

Research in adaptive control algorithms is primarily motivated by the fact that these algorithms have
the capability to estimate and suppress the effect of system uncertainties resulting from imperfect system
modeling, degraded modes of operation, abrupt changes in dynamics, damaged control surfaces, and sensor
failures; to name but a few examples. Although government and industry agree on the potential of these
algorithms in providing safety and reducing system development costs, a major issue is their poor transient
performance.

To address this problem, authors of [41-48] present modifications to adaptive update laws. In
particular, the work in [41-43] uses filtered versions of the control input and state, [44—46] uses a moving
time window of the system uncertainty, and [47, 48] uses recorded and instantaneous data concurrently. In
contrast to these approaches, the authors of [75, 79, 87] present an approach called artificial basis functions

that adds modification terms not only to the update law but also to the adaptive controller and show that

IPortions of this chapter are previously published in [86]. It is an open access article distributed under the terms and conditions
of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). The license is included in
Appendix B.
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the system error can be suppressed during the transient system response. The common denominator of the
approaches in [41-48, 75, 79, 87] is that they introduce additional mechanisms to model reference adaptive
control laws that capture a form of the system uncertainty in order to suppress its effect.

In this paper, we introduce a novel framework called direct uncertainty minimization for model
reference adaptive control laws. Unlike the approaches in [41-48], the proposed framework consists of an
architecture involving modification terms in both the adaptive controller and the update law such that these
terms are activated when the system error is nonzero and vanishes as the system reaches its steady state. In
addition, this new framework directly allows to suppress the effect of system uncertainty on the transient
system response through a gradient minimization procedure, and hence, leads to improved system perfor-
mance. Furthermore, unlike the approaches in [75, 79, 87], the proposed framework is computationally
less expensive and it can enforce the system error to approximately stay in an a priori given, user-defined
error performance bound. The proposed framework is first developed for adaptive control laws with linear
reference models and then generalized to adaptive control laws with nonlinear reference models. This
generalization adopts tools and methods from [49].

The organization of this paper is as follows. Section 3.2 highlights the notation used in this paper
and states necessary mathematical preliminaries. Section 3.3 introduces the proposed direct uncertainty
minimization framework, while Section 3.4 generalizes the results of Section 3.3 to a class of nonlinear
reference models. Two illustrative numerical examples and experimental results are provided in Sections
3.5 and 3.6 to demonstrate the efficacy of the proposed approach to model reference adaptive control and

conclusions are finally summarized in Section 3.7.

3.2 Notation and Mathematical Preliminaries

We use a fairly standard notation, where R denotes the set of real numbers, R” denotes the set of n x
1 real column vectors, R denotes the set of n x m real matrices, R, (resp. R ) denotes the set of positive
(resp. non-negative-definite) real numbers, R’ (resp. @T") denotes the set of n X n positive-definite (resp.
non-negative-definite) real matrices, D"*" denotes the set of n X n real matrices with diagonal scalar entries,

()T denotes transpose, (-)~! denotes inverse, tr(-) denotes the trace operator,

H ‘2 denotes the Euclidian

denotes the Frobenius matrix norm, and “£” denotes equality by definition. Furthermore, we

norm, ||

write Amin(A) (resp., Amax(A)) for the minimum (resp. maximum) eigenvalue of the Hermitian matrix A.
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We next state necessary preliminaries on the model reference adaptive control problem. For this

purpose, consider the uncertain dynamical system given by
Xp(t) = Apxp(t) +BpAu(r) +Bpdy(xp(1)),  xp(0) = xp0, (3.1

where xp () € R™ is the state vector available for feedback, u(z) € R” is the control input restricted to the

class of admissible controls consisting of measurable functions, J, : R"» — R” is an uncertainty, A, € R"*"»

xXm

is a known system matrix, B, € R"™”*"™ is a known control input matrix with BIT)Bp being nonsingular, A €

RN D™ ™ is an unknown control effectiveness matrix, and the pair (Ap,B,) is controllable. The next

assumption is standard in adaptive control literature [5—7].

Assumption 3.2.1 The uncertainty in (3.1) is parameterized as
&) = Wy 0p(xp(1), xp(r) €R™, 3.2)

where W, € R*™ is an unknown weight matrix and o, : R"™ — R® is a known basis function of the form

0, (xp(1)) = [Op1 (xp(1)), Gp2 (xp (1)), - -, Ops (3 (1))] ™

For addressing command following, let ¢(7) € R" be a given piecewise continuous command and

x.(t) € R™ be the integrator state given by the dynamics
XC(I> - prp([) _C(Z)7 XC(O) = Xc0, (33)

where E, € R"*" selects a subset of x,(¢) to follow ¢(¢). Based on the above construction, (3.1) and (3.3)

are now augmented as
X(1) = Ax(r)+BAu(t)+BW, 6p(xp(1)) + Bec(r), x(0) = xo, (3.4)
where x(r) £ [x} (1),x¢ (1)]T € R", n=ny + ne, is the augmented state vector, xo =[x}, x]" € R, and

P C

Ap Opyn,

A 2 e R™", (3.5)
Ep Onc><nC
B £ [Bl, 0 ,|" e R, (3.6)
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B, 2 [of Ly )T € RV (3.7)

npXne?

Consider now the feedback control law given by
u(t) = un(t) +ualt), (3-8)

where u, (¢) and u,(¢) are the nominal feedback control law and the adaptive feedback control law, respec-

tively. Let the nominal feedback control law be further given by
un(t) = —Kx(t), KeR™" 3.9
such that A, £ A — BK is Hurwitz. Using (3.8) and (3.9) in (3.4) yields
X(t) = Awx(t)+Bec(t) + BAlua(t) +Who(x(t))], (3.10)
where
w2 AW (AT =) T e Rimm (3.11)
is an unknown aggregated weight matrix and

o(x(1)) 2 [of (x(t)),x" ()K" € RET™ (3.12)

is a known aggregated basis function. Considering (3.10), the adaptive control law is given by

w(t) = —WT(0)ok()), (3.13)

W) = yo(x(t)el(1)PB, W(0)=W,. (3.14)
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In (3.14), y € R, is the learning rate, e(t) = x(t) — x;(¢) is the system error state vector with x,(t) € R" being

the reference state vector satisfying the reference model dynamics

X(t) = Ax(t)+Bec(t), x:(0) = x0, (3.15)
and P € R’*" is a symmetric solution of the Lyapunov equation
0=A'P+PA,+R, RERY™ (3.16)
Now, using (3.13) in (3.10) yields

%(t) = Awx(t)+Bc(t) — BAWT (1) (x(1)), (3.17)

and the system error dynamics are given using (3.15) and (3.17) as
é(t) = Ace(t) —BAWT (1) (x(1)), e(0) = e, (3.18)

where W (1) 2 W (t) — W € REHMX" and e £ xg — xy0.

Remark 3.2.1 The update law given by (3.14) can be derived using Lyapunov analysis by considering the

Lyapunov function candidate (see, for example, [5-7])
V(W) = e"Pe+y 't (WAV2)T(WA?). (3.19)
Note that V(0,0) = 0 and V(e,W) > 0 for all (e,W) # (0,0). Now, differentiating (3.19) yields
Vie(t),W(t)) = —e (t)Re(t)— 2" (t)PBAWT (1) (x(t)) +27 e WT()W(1)A, (3.20)

where using (3.14) in (3.20) results in

Vie(t),W(t)) = —e'(t)Re(t) <0, tcR,, (3.21)
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which guarantees that the system error state vector e(t) and the weight error W (t) are Lyapunov stable, and
hence, are bounded for allt € R. Since o(x(t)) is bounded for all t € R, it follows from (3.17) that é(t)
is bounded, and hence, V(e(t),W (t)) is bounded for all t € R . Now, it follows from Barbalat’s lemma [88]

that

lim V(e(r), W(r))=0, (3.22)

=300

which consequently shows that e(t) — 0 as t — oo.

Remark 3.2.2 In this paper, we assume that the uncertainty can be perfectly parameterized as in (3.2),
which implies that the structure of the uncertainty is known. To elucidate this point, consider an example
with the uncertainty 8y (xp(t)) = Otixp1 (1) + Oczxgl (1) + a3xp3 (1), where xy = [xp1 (1), xp2(t)] is the state vector
and o, 0, and 03 are some unknown parameters. In this case, it follows from the parameterization in (3.2)
that W' = [ou, 0, 03] and &, (xp(t)) = [xp1 (t),xgl (t), xp3(t)]. That is, provided that one knows the structure
of the uncertainty as in this representative example, the basis function can be easily formed. For situations

when one does not know the structure of the uncertainty and the uncertainty in (3.1) cannot be perfectly

parameterized, then Assumption 3.2.1 can be relaxed by considering [89, 90]
St xp(1)) = W (1)op(xp(t)) + & (1,x(1)),  xp(t) € Dy, (3.23)

where W, (t) € R*™ is an unknown time-varying weight matrix satisfying ||W,(t)||r < w and |W,(t)|lr < w
with w € Ry and w € Ry being unknown scalars, o), : Dy, — R* is a known basis function of the form
Oy (xp(1)) = [1, 0p1 (xp(2)), Op2 (xp (1)) - . -, Ops—1 (5p(2))] ", & : Ry x Dy, — R™ is the system modeling error
satisfying ||&(t,x,(t))||2 < € with € € Ry being an unknown scalar, and D, is a compact subset of R™. In

this case, the update law given by (3.14) can be replaced by, for example,
W(t) = yProj[W(t), o(x(t))e" (t)PB], W(0) =W, (3.24)

to guarantee the uniform boundedness of the system error state vector e(t) and the weight error W (t), where

Proj denotes the projection operator [82].
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3.3 Direct Uncertainty Minimization for Adaptive System Performance Improvement: Linear Ref-

erence Model Case

For the model reference adaptive control framework introduced in Section 3.2, we now develop the
direct uncertainty minimization mechanism to improve transient system response. In particular, we first

modify the adaptive feedback control law given by (3.13) as
uy(t) = =W (t)o(x(1) — 9 (), (3.25)

where @ (1) € R™ is the system performance improvement term that satisfies
t
o) = ¢(0)+k(B™B)'B [(e(t) - e(())) 7/ Are(r)dr] : (3.26)
0
with k € R, being a design parameter. Using (3.25), the system error dynamics in (3.18) become
é(r) = Ase(r)—BA [WT(z)o(x(z)) + ¢(z)} . e(0) = e (3.27)
Notice that the ideal system error dynamics have the form
é(t) = Age(t), e(0)=eo, (3.28)

under nominal conditions with ¢(z) = 0 when there is no system uncertainty or control uncertainty. Moti-
vating from this standpoint, the mismatch term W (¢)o (x(¢)) + ¢ (¢) in (3.27) has to be minimized during
the transient system response to improve system performance. In the next theorem, we show that the
proposed system performance improvement term given by (3.26) achieves this objective through a gradient

minimization procedure.

Theorem 3.3.1 The modification term of the adaptive feedback control law in (3.26) is the negative gradient

of the cost function given by

IO = SN Oo0) +00)] (329
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Proof. The negative gradient of the cost function given by (3.29) with respect to ¢ (¢) has the form

given by
9J() _ 7
5w = fk[A(WT(t)G(x(t))Jr(p(t))], (3.30)
which can be rewritten using (3.27) as
2J() - ,
530 = k(B"B) IBT[e(z)—Are(z)}. (3.31)

In (3.31), note that BB = Bng is nonsingular by its definition in Section 3.2. To construct the modification

term of the adaptive feedback control law in (3.26), let

: 97 (")
(P(t) = - 0
(1)
— k(B"B)"'BT [é(t) —Are(t)} : (3.32)
where (3.26) is a direct consequence of (3.32) using integration by parts. |

Remark 3.3.1 The proposed modification term of the adaptive feedback control law in (3.26) allows for the
system error to be shaped by suppressing the mismatch term WY (t)o (x(¢)) + ¢ () in (3.27) due to gradient
minimization, since it is constructed to be the negative gradient of (3.29) with respect to §(t). Therefore,
by adjusting k in (3.26), the uncertain dynamical system response and the reference model response can be
made close to each other for all time including the transient phase. See Section 3.5 for illustrative numerical

examples.

Next, to maintain closed-loop system stability under the modified adaptive control signal given by

(3.25), we now modify the update law given by (3.14) as

A

W) = yox)|e")PB+EQT(1)|, W(0) =W, (3.33)

with & = k/a and a € R, being a design parameter.

Remark 3.3.2 Note that the structure of (3.26) is much simpler than the structure of (44) in [75], in that

the former does not involve W(t) dependence and additional integration terms. Furthermore, the same
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conclusion is also true when (3.33) is compared with (31)-(33) of [75], where the later has an extra
differential equation in addition to the modification terms. Thus, the approach proposed here is much less

computationally expensive than [75, 79, 87].

Now, we are ready to state the following theorem, which shows the asymptotic stability of the pair

(e(r),9(t)) as well as the Lyapunov stability of W (z).

Theorem 3.3.2 Consider the uncertain dynamical system given by (3.1) subject to Assumption 3.2.1, the
reference model given by (3.15), the feedback control law given by (3.25) with (3.26) and (3.33). In addition,

let & be chosen such that
1 *
in(R) = || PB[[iA” > 0 (3.34)

holds, where HA‘ \Fg A* (here A* € R is a known, possibly conservative bound on the control effective-
ness). Then, the solution (e(t), q)(t),W(t)) of the closed-loop dynamical system is Lyapunov stable for all

initial conditions and t € R, lim, . e(t) = 0, and lim;_, ¢ (t) = 0.

Proof. To show Lyapunov stability of the solution (e(r),¢(z),W (t)), consider the Lyapunov func-

tion candidate given by
V(e,9,W) = e"Peta'¢To+y 'w (WAVH)T(WA'?). (3.35)

Note that 1(0,0,0)= 0 and V(e,¢,W)> 0 for all (e,¢,W)5 (0,0,0). Differentiating (3.35) along the

closed-loop dynamical system trajectories yields
V(e(t),9(t),W(t)) = —e'(t)Re(r) —2E9T(1)A () —2¢" (1) PBA'PA?¢(1). (3.36)

Using Young’s inequality [14] for the last term in (3.36) gives

—2e"(t)PBA'PA29(r) < |—2e"(t)PBAAAY (1)
< :LeT(t)PBABTPe(t)+/.L¢T(I)A¢(t). (337)
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Now, setting 4t = £ and using (3.37) in (3.36) yields

—e"(t)Re(1) + ! (t)PBAB Pe(t) — E¢T (1) Ad(2)

T
ge
(R €)1+ 2 1) 1171 A"~ E2asn(M) [0 0]

V(e(t),¢(1),W(1))

IN

IN

= eI [Aaun(®) — g PBIA" ~E AW [0 03 (3.38)

Using the condition (3.34) in (3.38), it follows that V(e(r), ¢ (¢), W(r)) < 0, which guarantees the Lyapunov
stability of the solution (e(r),(z),W(t)). Since this implies the boundedness of e(r), ¢(¢), and W (r) for
all t € Ry, it follows from (3.27) and (3.32) that ¢(¢) and ¢(t) are bounded for all # € R, and hence,
V(e(t),¢(r),W(t)) is bounded for all r € R It now follow from Barbalat’s lemma [88]

t]ggV(e(t), o(),W()) = 0, (3.39)
which shows that lim,_,.. e(f) = 0 and lim;_,.. ¢ (¢) = 0. [ ]

From a practical standpoint, if e(¢) is sufficiently small, then the design parameter &, which affects
both modification terms in (3.25) and (3.33) can be chosen to be small such that (3.34) holds. However,
as e(t) becomes large, then £ may need to be increased accordingly to put more weight on minimizing the
cost function given by (3.29), and hence, to enforce system error to approximately stay in a priori given,
user-defined performance bounds. To achieve this practical objective, we can let &(¢) = k(t)/a, where

E(t) € [€min, Emax)> Emin € Ry, Emax € R4, and consider the cost function given by

7t = M)A 0ot + o) (340)

Choosing the modification term in (3.25) as the negative gradient of (3.40), i.e., ¢ () = — ?97;({)) , and follow-

ing similar steps as highlighted in the proof of Theorem 3.3.1, it follows by integration by parts that

00) = 000)+a|EE) BTe() - EO)EE) 'BTe(0) - [ 4(5)(8"B) Be(ar

- /O £ (1) (B"B) ' B Are(v)dt | (3.41)

Notice that in this case the modified update law becomes
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A

W) = yox(n) | 0PB+EMDOT()], W(0) =W, (3.42)
and the condition (3.34) needs to be replaced with
1 2 .
Amin(R) — z—||PB|[zA" >0, (3.43)
émjn
where ‘ ‘A| |F§ A* (here A* € R, is a known bound on the control effectiveness). In addition, we choose

g(t) = Y% [f(e) (6 (t) - 6min)+(l —f(e)) (é (t) - émax)] ) 6(0) = 50 € [émimémax]v (3.44)

where 7z € Ry and f(e) € [0,1] is a continuously differentiable function such that it is close to 1 when
e(r) is sufficiently small and otherwise close to 0. It follows from (3.44) that & (¢) € [Emin, Emax] and & (7)
approaches to Enin (resp., Emax) when f(e) =1 (resp., f(e) = 0). A candidate f(e) has the form f(e) =
1 — [1—sech(ci||e(t)[[p)], |le(t)||p = \/€T(t)Pe(t), where it is depicted in Figure 3.1 for ¢; = 5 (this is

chosen to drive &(t) to Enmax if ||e(7)||p is larger than 0.5) and ¢, = 10.

0.9
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lle(®) e
Figure 3.1: A candidate f(e) for (3.44).
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3.4 Generalization to a Class of Nonlinear Reference Models

In most of the model reference adaptive control literature, it is common to design a reference model
with linear dynamics as given by (3.15). While this is practical for several applications, the control designer
may prefer to use a nonlinear reference model to better capture the desired closed-loop system performance
for many robotics and flight control applications. By adopting the tools and methods from [49, 74], we now
generalize the results in Section 3.3 such that the proposed direct uncertainty minimization adaptive control
architecture can be used to suppress the effect of the system uncertainty on the transient system response
and drive the states of a nonlinear uncertain dynamical system to the states of a class of nonlinear reference
models.

For this purpose, we recast the uncertain dynamical system given by (3.1) with a more general class

of affine-in-control nonlinear system dynamics given by

() = folxp(t)) +BpAu(t) +Bpdp(xp(2)),  xp(0) = x,0, (3.45)

where xp (1) € R™ is the state vector, u(t) € R™ is the control input restricted to the class of admissible
controls consisting of measurable functions such that , f, : R" — R" is a known system function that
satisfies f,(0) = 0, B, € R™*™ is a known control input matrix, A € R} NID"*™ is an unknown control
effectiveness matrix, &, : R" — R” is the system uncertainty, and it is implicitly assumed that the required
properties for the existence and uniqueness of solutions are satisfied for the controllable uncertain dynamical
system such that (3.45) has a unique solution forward in time [80, 88].

Once again, to address command following, (3.45) can be augmented with the integrator state

dynamics given by (3.3) in the following form subject to Assumption 3.2.1
X(1) = f(x(t),c(t))+BAu(t) +BW, o,(xp (1)), x(0) =xo, (3.46)

where x(1) = [xg(t),xg(t)]T € R", n=ny+ne, is the augmented state vector, xo = [xgo,xZO]T eR" ¢(t) eR™
is a given bounded command, B is given by (3.6), and f : R" x R"* — R" is the aggregated system function
with the integrator state dynamics that satisfies f(0,0) = 0 and

Folplt
Flx(),c(t)) = 0 (3.47)

Epxp(1) —c(t)
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Next, consider the nonlinear reference model given by
(1) = filx(t),c(r), x(0) =xo, (3.48)

where x.(r) € R”" is the reference state vector and f; : R"” x R" — R”" is the reference model function that

satisfies f:(0,0) = 0 and

file(t),e(t)) = fal(r),c(r) — Bk(x(2)), (3.49)

with & : R” — R being a feedback law such that x;(¢) is bounded for all # € R ;. In addition, it is implicitly
assumed that (3.48) has a unique solution forward in time.

Let the nominal control law be given by

un(t) = _k(x(t))7 (3.50)

such that with (3.8), (3.46) can be rewritten as

x(t) = f(x(t),c(t))—Bk(x(t))—i—BA[ua(t)—i-A_lW[;TO'p(xp(t))+(A_1—I)k(x(t))]

= filx(t),c(t) +BA[ua(r) + Wg 00 (x(1))] (3.51)

where W, = [A~'W,[, (A"'=D)]T € REMXM and 6, (x(r)) £ [0, (xp(1)), K (x(1))]" € R+ The system

error dynamics then follow from (3.48) and (3.51) as
er) = filx(t),e(t) = fila(r),c(0)) + BA[ua(t) + Wy 05 (x(1))],  €(0) = ep. (3.52)

Note that there exists a known signal v(x(z),x:(),c(t)) € R™ which can be used as a feedback linearization

term such that

Are(t) = fr(x(1),c(t)) = fr(xe(t),c(2)) + Bv (") (3.53)
holds, and hence, (3.52) can be written as

é(t) = Are(t)+BA[ua(t) + Wy oo(x(t)) — A v()]

= Ace(t)+BA[uy(t1) + W0 ()], (3.54)
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with W £ [W), —A~1T € RE+27)%m peing the unknown aggregated weight matrix and o(-) £ [6] (x(7)),
vT()]T € R6+27) being the known aggregated basis function.

Now, consider the adaptive feedback control law given by
(1) = =W (1)a () =9 (1), (3.55)

where ¢ (¢) € R™ satisfies (3.41) with (3.44) and W(¢) € RE+2m)xm gatisfies

~

W) = yo() [eT(t)PB+ ENoT(0)], W) =W (3.56)
Using (3.55) in (3.54), it follows that the system error dynamics can be written as
é(t) = Awe(t)—BAWT(1)o () +0(1)], (3.57)

where W(Z) £ W([) — W e Rs+2m)xm

Remark 3.4.1 It should be noted that the term v(-) acts similar to a feedback linearization signal, which is
an important feature in generalizing the direct uncertainty minimization framework for the considered class
of nonlinear reference models. By appropriately selecting v(-), when possible, for the given application such
that (3.53) holds and then embedding v(-) into the unknown weight matrix W and the known basis function
o (+), the resulting system error dynamics given by (3.57) have an identical structure to the system error
dynamics given by (3.27) in Section 3.3 for the linear reference model. It then follows that the analysis and
synthesis of the direct uncertainty minimization mechanism and stability analysis presented in Section 3.3

directly translates to the case in which nonlinear reference models are used.

Theorem 3.4.1 Consider the nonlinear uncertain dynamical system given by (3.45) subject to Assumption
3.2.1, the nonlinear reference model given by (3.48), the feedback control law given by (3.55) with (3.41),
(3.44) and (3.56). In addition, let Enin be chosen such that (3.43) holds. Then, the solution (e(t), ¢ (1), W (1))

of the closed-loop dynamical system is Lyapunov stable for all initial conditions andt € R, lim; e e(t) =0,

and lim; . ¢ (¢) = 0.

Proof. As a consequence of the discussion highlighted in Remark 3.4.1, the proof is similar to the

proof of Theorem 3.3.2, and hence, is omitted. [ |
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3.5 Illustrative Numerical Examples

To demonstrate the efficacy of the proposed direct uncertainty minimization framework, we now
present two examples in the following two subsections. We first investigate the application to a hypersonic
vehicle using a linear reference model. The second example considers a wing rock dynamics model for an
aircraft with a nonlinear reference model, where the purpose of the nonlinear reference model is to limit the

pilot authority for envelope protection.

3.5.1 Example 1: Application to a Hypersonic Vehicle Model

For this example, we first formulate a state space model of a generic hypersonic vehicle (GHV).
Then, it is explained how the model is decoupled into longitudinal and lateral dynamics for which separate
controllers are designed. The longitudinal and lateral controllers have both a nominal and adaptive por-
tion where the simulation results illustrate both nominal control performance, a standard adaptive control
performance, and the proposed adaptive control performance.

For the configuration with an altitude of 80,000 feet and a Mach number of 6, a linearized model

under nominal conditions (& (xp(¢)) = 0 and A =) is obtained in the form of (3.1) with

—3.70x1073  —7.17x 107! 0 —3.18x 10! —2.67x107*
—535x1077  —2.39x 107! 1 —2.95x10712  223x1077
—2.79 %107 4.26 —1.19x 107! 0 3.94 x 1073
—4.76 x107% 131 x 10713 1 —445x 107 —1.33x 107!

Ap=|-553x10710 —587x10° 0 5.87x 103 0
599x 10716 —3.14x 107! 0 —3.04x 1071 —9.74 x 10716
1.47x 10710 —4.45%x 107 0 0 —1.00 x 10~

—529x10712  398x 1078 0 0 1.28 x 10712

8.08x 1072  204x10722 1.01x10720 1.17x107'% —1.73x1073!
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—8.81x 107!
—1.06 x 1073
—1.47
—1.08 x 1071
0
—6.97 x 1072
—1.31x10°
2.07
—2.38x 107

—6.53x 1073
—1.33x107*

—1.84x 107!

—1.40x 10716
—5.90x 101

8.56x 1014

0
0
4.44 x 10716
0
—1.04 x 1072
—2.03
—1.55x 1073
8.54 x 107!

—1.24x 10713

—244x 10713

—1.60x 10~ 13

—2.47x 107

3.17 x 1072

0

0

0
—9.58 x 10716

0
—9.99 x 107!
~7.54 %1073
—5.31x 1072
—8.84 x 1073

0

0

—8.04

0

—2.98 %1073
1.17x 1077

248 x 1074

—2.18x10*
10.3

2.85%x 107!

—1.77x 1071
—3.18 x 1072
0
—2.58x 10718
—3.26x 10713 (3.58)
—5.35x 1073
0

0

—3.00x 107

0

0 (3.59)

0

with the state vector being defined as x, (1) = [V (1), &(t),q(t),0(¢),h(t), B(t), p(t),r(t),¢(¢)]", where V(¢)

denotes the total velocity, ¢ () denotes the angle of attack, ¢(¢) denotes the pitch rate, 6(¢) denotes the pitch

angle, h(t) denotes the altitude, B(¢) denotes the sideslip angle, p(r) denotes the roll rate, (¢) denotes the

yaw rate, and ¢ (¢) denotes the roll angle. The control input vector is defined as u(t) = [8:(t), 8(t), 8 (¢)]T

b}

where 0, (1) denotes the elevator deflection, ,(7) denotes the aileron deflection, and J;(7) denotes the rudder

deflection. To control the model described above, we decouple the system into its longitudinal and lateral

dynamics, design nominal and adaptive controllers for the decoupled system, and then combine the separate

controllers to control the overall coupled GHV model (see Figures 3.2 and 3.3).

43

www.manaraa.com



3.5.1.1 Longitudinal Control Design

For the decoupled longitudinal dynamics, we consider the state vector defined as xp, (f) = [o(7),

q(1)]T, with the respective system matrices

—2.39x 107! 1
Apy = , (3.60)
4.26 —1.19x 107!
—1.33x 107
B,, = ) (3.61)
—1.84x 107!

LQR theory is used to design the nominal controller with E, = [I, 0] such that a desired angle of attack
command is followed. The controller gain matrix K], is obtained using the highlighted augmented formu-
lation ((3.5) and (3.6)), along with the weighting matrices Q), = diag[20000, 25000, 400000] to penalize

x10(f) and R}, = 12.5 to penalize uyo(2), resulting in the following gain matrix

Ko = |-1.65x10> —6.09x 10" —1.79 x 10%| - (3.62)

The solution to AT Py + PoAr, + Ry, =0, where A, £ Ay, — BjoKjo, is calculated using Ry, = diag[1, 1, 100]
for both the standard adaptive control design and the proposed controller. For the proposed design, we
use (3.25), (3.41), and (3.42), and resort to (3.44) for enforcing ||ejo(¢)|| p, < 0.5. Additionally, note that
Emin = 10 is selected to satisfy (3.43) and we choose a = 2. To visualize the overall longitudinal control

design, a block diagram is provided in Figure 3.2.

de(t) ] a(t),q(t) I > T1o(t)
—»{ Uncertain System

Yy
%
y

clo(t)

Lo Ty, (1) - A
Longitudinal Reference System )

X (1)
Uay, (£) Longitudinal Adaptive | Wi, (%) Longitudigal Weight
Control - Update La [«

Figure 3.2: Block diagram of separated longitudinal control design.
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3.5.1.2 Lateral Control Design

The decoupled lateral dynamics follow similarly. Specifically, we consider the state vector defined

as xp, (1) = [B(2), p(t),r(t),9(t)]T, with the respective system matrices

—6.97x1072 —1.04x1072 —999x10"! —535x103

—1.31x103 —2.03 —7.54%x 1073 0
Ay, = , (3.63)
2.07 —1.55%x 1073 —5.31x10°2 0

—238%x107% 8.54x107! —884x103 —3.00x10°°

—247%x107> —2.18x 10~
—8.04 10.3

B,, = . (3.64)

317x1072  2.85x 107!

0 0

LQR theory is used to design the nominal controller with

1 000
E,, = (3.65)

00 01
such that a desired sideslip angle command and roll angle command are followed. The controller gain
matrix Kj, is obtained using the highlighted augmented formulation along with the weighting matrices Qy, =
diag[100, 100, 100, 100, 400000, 2500] to penalize xi,(¢) and R}, = diag[1.25, 50] to penalize u,(2),

resulting in the following gain matrix

2.78 x 102 —9.08 —3.62x 10" —3.15x 10" 1.21x 10> —4.37x 10!
K, = . (3.66)

8.70x 10! 1.52x 107! —2.72x 10! 1.30 8.74 x 10! 1.51
The solution to AEﬁBa + PaAr, + Ry, =0, where A, 2 A, — BjaKj, is calculated using R, =diag[l, 1, 1, 1,
100, 100] for both the standard adaptive control design and the proposed controller. For the proposed design,
we use (3.25), (3.41), and (3.42), and resort to (3.44) for enforcing ||ej,(7)|| p. < 0.5. Additionally, note that
Emin = 10 is selected to satisfy (3.43) and we choose a = 2. Similar to the previous section, a block diagram
is provided in Figure 3.3 to visualize the control design using the decoupled lateral dynamics to control the

overall uncertain system.
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3.5.1.3 Nominal System without Uncertainty

ENORAOIR

Uncertain System

@1a(t)

Lateral Adaptive Control |¢——

Lateral Weight
Update La

cra(t) i
\‘+ unln(t) K
< la [&
)
o, (1) -
—>| Lateral Reference System I——b()
\
Uay, (t) Wia(t)

era(t)

Figure 3.3: Block diagram of separated lateral control design.

The longitudinal and lateral controllers are augmented and applied to the overall coupled system.

We first consider the case when there is no uncertainty in the system to show the nominal performance of

the control designs. Figure 3.4 shows the response of the nominal control performance. It can also be seen

from this figure that the error signals are not equal to zero which is expected due to the coupling effects.
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< = ~ —r(t)
o sk . . . . . . . . A~ %0
< 0 5 10 15 20 25 30 35 40 a5 50 0 10 2'0 30 40 50 S| o 10 2.0 30 40 50
Time (sec) Time (sec) < Time (sec)
o0 T T T T
e x| c(t 3}
n © £ ,
2 — () =
S 1 o:(t) 5 /_J\
5 R S
< - de(t)
:O R § 5 6(1("’)
3 — 5 (t
=3 [ — gL . ()
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Time (sec) Time (sec)
DI usE ; ]
= —— Longitudinal
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=l I
@ 05
5 2f ~J \
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Time (sec) Time (sec)

Figure 3.4: Nominal controller performance without uncertainty.
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3.5.1.4 Uncertainty in Control Effectiveness and Stability Derivatives

We now consider the case when the control effectiveness matrix is unknown as well as the stability
derivatives C,,, and Cnﬁ. For this purpose, we let A = 0.5 and we increase C,,, and decrease Cnﬁ. Figure
3.5 shows the response with the nominal control, which goes unstable.

A standard adaptive control design is first implemented. For the standard adaptive controllers, we
select the basis functions ojo(x10()) = [xL (1)KL, a(t)]T and o, (x1a(t)) = [xL ()KL, B (2)]T respectively for
the longitudinal and lateral controllers. Figures 3.6 and 3.7 show the standard adaptive control response.
Specifically, Figure 3.6 shows that for a low learning gain the system transient performance in the sideslip
angle and angle of attack is poor. In addition, the control surface deflection angles exceed practical working
limits. To improve the performance, the learning gain is increased as shown in Figure 3.7. Both the tracking
performance and the control response improve; however, as seen in the bottom part of the figure, the standard
adaptive controller is unable to enforce a pre-defined bound on the error.

To improve performance further and enforce a user-defined bound on the error, the proposed adap-
tive controller is then implemented using the same basis functions as the standard adaptive control design.
Figures 3.8 and 3.9 show the proposed controller performance using the gain varying control. Specifi-
cally, Figure 3.8 illustrates the superior tracking performance and Figure 3.9 shows the guaranteed bound

lle(t)||p < 0.5 for both the longitudinal and lateral dynamics.

—
S
O 20 20 ~_25
= c(t) & &0 q(t)
15 15 2 20
2 =fl—al(t) = Z . p(t)
< < 10 0 -
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Time (sec) Time (sec) < Time (sec)
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0 4 g o de(t)
80 s000 = e (T
T o \V/ = °Ml da(t)
Y 5000 . 2. 4 —0,(t)
b:n -10000 (t) ’_""‘ 2k
----- c
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Figure:3:5::Nominakcontroller performance with uncertainty in A, Gy, and Cy,.
47

www.manaraa.com



Sideslip Angle (deg)

Figure 3.6:
12><2 and F]a

Angle of Attack (deg)

Sideslip Angle (deg)

Angle of Attack (deg)

Roll Angle (deg)

Roll Angle (deg)

>

IS

~

o

o

@

o

~

o

N

~

o
5]
f— o0
C(t) % 10 %D 10
—a(t) = = 7
.......... a(t) < n o "u’\
2 =
< £ —q(t)
.Ja 0 5 20 —p(t)
1 £ = —r(t)
I I I I I I I A~ o0 -30
20 25 30 35 40 45 50 0 10 20 30 40 50 S| 0 10 20 30 40 50
Time (sec) Time (sec) < Time (sec)
Y [ o) N i
i —5(t) e
H +
noo e t =1 /\
. N =0 = Al A\l
i V‘r T —
i i = —0.(t)
i 1 £ ——0a(t)
\ 2 wof —d:(t)
s e s s s L 3 s s s s s s s s
20 25 30 35 40 45 50 o 5 10 15 20 25 30 35 40 45 50
Time (sec) Time (sec)
sl —— Longitudinal
N ——Lateral
wh
= —WCB
St
N
—_— 20 4
10 4
2‘0 : ‘ 3‘5 40 45 50 00 5 10 15 20 35 40 45 50

o

25 30
Time (sec)

25 30
Time (sec)

o

Standard adaptive controller performance with uncertainty in A, C,,, and Cnﬁ T =
= h3x3).
o
— %
—c(t) 810 5 10
—a(t) < :8/ A LA
o
.......... Oér(t) _%;o s E.: V—: ) g
< i —q(t)
g ° = 0 —p(t)
= = —r(t)
s N T R N S S A 5
10 15 20 25 30 35 40 45 50 0 10 20 30 40 50 =] o 10 20 30 40 50
Time (sec) Time (sec) << Time (sec)
T T [ |— () & wf 1
—(t) = ul 1
.......... be(t) *é 0
= o
L | = —0.(t)
L | B a0 —5a(t)
L ] g 5,(1)
S S S S | S Y S S A"
10 15 20 25 30 35 40 45 50 ] 5 10 15 20 25 30 35 40 45 50
Time (sec) Time (sec)
10F T T T
r —— Longitudinal
L sy ——Lateral
~ = —WCB
\Y 3k |
[ |l AN ]
N S R B . A e RS e A e
10 15 20 25 30 ] 5 10 15 20 25 30 35 40 45 50
Time (sec) Time (sec)

Figure 3.7: Standard adaptive
10017 and I'y = 1003 3).

controller performance with

48

uncertainty in A, G,,,

and Cnﬁ T =

www.manharaa.com



&
T

Angle of Attack (deg)
°\ —

35

il
T

h o a ©
T

Roll Angle (deg)

H
o)
T

20 25 * 30
Time (sec)

~
T

-
T

“
T

N
T

Pitch Angle (deg)

Sideslip Angle (deg)

°

Figure 3.8: Proposed gain varying adaptive control performance with uncertainty in A, Gy, and Gy,

Time (sec)

by and Ty, = diag[0.1,1,1], & = 10, and a = 2).

()

80

60

40

20

Angular Rates (deg/sec)

Control Input (deg)

5 10 15 20 25 30 35 40 45 50
Time (sec)
‘ pr— A% Al
—q(t)
—p(t)
—r(®)
5 10 15 20 25 30 35 40 45 50
Time (sec)

[
W=

de(t)

da(t)

25

30 35

Time (sec)

a0 a5 50

(Flo =

T
—— Longitudinal
- —— Lateral
—WCB
| | | | |
0 10 15 20 25 30 35 40 45 50
Time (sec)
I
[ —— Longitudinal
—— Lateral
AA LT ! ! ! Y ! ! !
0 10 15 20 25 30 35 40 45 50
Time (sec)

Figure 3.9: System error bounds and adaptation gain for Figure 3.8.
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3.5.2 Example 2: Wing Rock Dynamics with Nonlinear Reference Model

We now consider the nonlinear dynamical system representing a controlled wing rock dynamics

model given by

X 0 1| |x 0 X1 (0 0
p1 (1) _ p1 (1) N (Au(r)+6p(xp(t))>, p1(0) % 3.67)
X (1) 0 0] {xpn(t) 1 xp2(0) 0

where x;,; represents the roll angle in radians and x,; represents the roll rate in radians per second. In (3.67),

8, (xp) represents an uncertainty of the form & (xp) = 0t1xp1 + 02xp2 + 03| xp1 [Xp2 + | xpa|xp2 + @5, , where
a;,i=1,...,5, are unknown parameters that are derived from the aircraft aerodynamic coefficients. For this

numerical example, we set ¢ = 0.5, o = 1.0, 3 = —1.0, 04 = 1.0, s = 0.5, and A = 0.5.

Note that for this example, the wing rock dynamics are linear such that f;(x,(¢)) in (3.45) is written
as Apxp(t). As aresult, we let Ej, = [1, O} such that the roll angle command is followed and use LQR theory
with the augmented formulation ((3.5) and (3.6)), along with the weighting matrices Q = diag[50, 1,100]
and R = 1 to obtain the gain matrix K = [12.30, 5.06, 10.0]. In addition, we adopt the same nominal control

structure to limit pilot authority as in [74] to design the nonlinear reference model as

010 0 0
x(t) = [0 0 o|x@)— [1]|k(x(t))+] 0 | c(t), x(t)=0, (3.68)
1 00 0 —1

with k(x(£)) = K [x01 (1), xi2(2), P(xe(1))xe3(2)] T e(t) = ca(t)®(x:(t)), and

®(x(f)) = tanh (5 L1 (1)] 2‘) . (3.69)

Note that cq(?) is a desired command applied by the pilot and ®(x;(¢)) is a nonlinear function which limits
the pilot authority by constraining the absolute value of the roll angle to remain less than or equal to 2.

Motivated by the structure of the nonlinear reference model, the feedback linearization term is designed as
T T
v(-) = —Ke(t) + K [x1(2), x2(r), D(x(2))x3(r)] =K [x11 (1), x02(1), P(xe(1))xe3(2)] (3.70)
such that (3.53) holds. Using this, we select the basis function as
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T
0 (-) = [xp1, Xp2s [xp1lxp2s [p2lxpe, xop, xT (KT, VI()], (3.71)

and we set R = I3.3 for both the standard adaptive controller and the proposed adaptive controller. Fur-
thermore, for the proposed design, we use (3.55), (3.41), and (3.56), and resort to (3.44) for enforcing
lle(r)]|p < 0.5. Additionally, note that &y = 1 is selected to satisfy (3.43) and we choose a = 2.

Figure 3.10 shows the standard adaptive control response. It can be seen from the figure that
even though the roll angle command is reasonably followed, the roll rate and the control response have
undesirable high-frequency content which can cause instability. In addition, as seen in the bottom part of
the figure, the standard adaptive controller is unable to enforce a pre-defined bound on the error.

To improve performance and enforce a user-defined bound on the error, the proposed adaptive
controller is then implemented. Figures 3.11 and 3.12 show the proposed controller performance using
the gain varying control. It is clear from Figure 3.11 that the proposed adaptive controller obtains superior
command following performance and Figure 3.12 shows that the system error stays in the a priori given,

user-defined performance bound.

21 (1)

|
|
b
|

| | |
0 5 10 15

5 T T T

Figure 3.10: Standard adaptive controller performance (y = 1).
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Figure 3.11: Proposed gain varying adaptive control performance (Y= 1 and 7z = 1, & =1,and a =2).
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Figure 3.12: System error bounds and adaptation gain for Figure 3.11.
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3.6 Experimental Results on Dual-Rotor Helicopter Testbed

In this section, the proposed adaptive control architecture is implemented on the Quanser AERO
testbed [50] in dual-rotor helicopter configuration. In order to proceed with the control design, we focus the

linearized model of the Quanser AERO testbed given by

JoO(t)+DgO(t) +Ko0(t) = 7to(t), 6(0)= 6y, (3.72)

Ty () +Dywr(t) = (1), w(0)= . (3.73)

Here, 6(t) denotes the pitch angle in radians and y/(r) denotes the yaw angle in radians. Moreover, Jy stands
for the total moment of inertia about the pitch axis, Jy, stands for the total moment of inertia about the yaw
axis, Dg stands for the damping about the pitch axis, Dy, stands for the damping about the yaw axis, and Kg

is the stiffness about the pitch axis. The control torques, which act on the pitch and yaw axes, satisfy

’L'g(l‘) = Kggug(t)+K9wuw(t), (3.74)

Tl’/(t) = Ku,gbt@(t)—i-wauw(t). (3.75)

with ug(¢) and uy(t) being the feedback control signals applied as motor voltages to the pitch and yaw
rotors, respectively. Here, Kgg is the torque thrust gain from the pitch rotor, Ky is the torque thrust gain
from the yaw rotor, Ky, is the cross-torque thrust gain acting on the pitch from the yaw rotor, and Kyg is the
cross-torque thrust gain acting on the yaw pitch rotor. Finally, we also note that Jy = 0.0219 [kgm?], Jy =
0.0220 [kgm?], Dy = 0.0071 [kgm?s~!], Dy, = 0.0220 [kgm?s~!], Kgp = 0.0011 kgm?s~2V~!], Ky =
0.0375 [kgm?s 2], Kyy = 0.0022 [kgm?s 2V, Ky = —0.0027 kgm?s~>V~!], Kp,, = 0.0021 [kgm?s~2
-V_l] are used from the Quanser AERO user manual [50].

Next, let x,(t) = [0(¢), w(2),0(t), ¥(t)]T € R* and u(t) = [ug(t),uy(t)]T € R2. Then, one can

equivalently rewrite (3.72)—(3.75) as

ip(t) = Apxp(t) +BpAu(t), xp(0) = xpo, (3.76)

where the controllable matrices A, and B, satisfy
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0 0 1 0 0 0
0 0 0 1 0 0
A — . By . (3.77)
—Kso/Jo 0 —Dg/Jg 0 Koo/Jo Koy/Jo
|0 0 0 —Dy/Jy | | Kyo/Jy Kyy/Jy|

Notice that we introduce A to (3.76), which is ideally equal to I. That is, we introduce uncertainty to A
in the experimental results presented below and we do not consider other system uncertainty in the form
7T 29
W Op(xp(1))”.
In the selection of the gain matrix K for the nominal control design, we resort to linear quadratic

regulator theory (e.g., see [91]). Specifically, we select E,, as

1000
E, = (3.78)

0100

such that a desired pitch command and yaw angle command can be ideally followed. The controller gain
matrix K is obtained using the highlighted augmented formulation along with the weighting matrices Q =
diag([2,2,0,0, 50,50]) to penalize x(¢) and R = 0.001/, to penalize u(t) as in [92], resulting in the following

gain matrix

82.85 —124.21 29.70 —-32.29 125.18 —185.28
K — , (3.79)

117.26  78.55 3895 19.04 18528 125.18
which has desirable phase margins of 61.9° and 62° and crossover frequencies of 5.95 rad/sec and 5.73
rad/sec for the pitch and yaw control channels respectively.
For the considered experimental set-up, a 30° yaw maneuver is considered as desired command
following objective, while the pitch command remains as 0°. The yaw command is applied practically as a
filtered 30° square signal. From the experimental viewpoint, it should be noted that the pitch and yaw motor

voltages saturate at +24V.
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3.6.1 Nominal Control Results without Uncertainty

We first consider the case when there is no added uncertainty in the control effectiveness matrix to
show the nominal performance of the experimental setup. In particular, Figures 3.13 and 3.14 respectively
show the nominal control performance and the system error. It can be seen from these figures that the
nominal control performs in a desirable manner and that the error signals are not equal to zero that is

expected due to possible modeling inaccuracies of the experimental setup.
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Figure 3.13: Nominal controller performance without uncertainty in the control effectiveness.
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Figure 3.14: Nominal system error without uncertainty in the control effectiveness.
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3.6.2 Adaptive Control Results with Uncertainty in Control Effectiveness

We next consider the case when the control effectiveness matrix is uncertain. For this purpose, we
let A =0.15. Figures 3.15 and 3.16 show the response with the nominal control and the system error, which
goes unstable. A standard adaptive control design is now implemented to stabilize the the unstable nominal
control response. Since we only consider the uncertainty in the control effectiveness, we select the basis
function as o(x(¢)) = [xT(t)KT]T for the control design. In addition, it should be noted that without loss
of generality, a projection based weight update law is used which adds additional robustness owing to the
modeling inaccuracies of the Quanser AERO testbed. The projection bounds are set elementally for the
considered uncertainty, W = A~! — b, as 4.5 < [W (1)]ii <13.5,i=1,2 (see Appendix A for details on the
projection operator). Moreover, we use R = 1.5/gx¢ to calculate P from (3.16) for the considered A, matrix.
Figures 3.17 and 3.18 show the standard adaptive control response with a low learning gain of y=0.1. It
can be seen from Figure 3.17, the system, while stable in the presence of the considered uncertainty, has
poor transient performance in the yaw and pitch response. In addition, as shown in Figure 3.18, the system
error exceeds the performance bound of € = 0.5. To improve the performance, the learning gain is increased
to v =10 as shown in Figures 3.19 and 3.20. As seen in Figure 3.19, the tracking performance improves and
Figure 3.20 shows the system error is now contained within the performance bound. In addition, comparison
of Figures 3.18 and 3.20 shows improved adaptation in the adaptive control signal and the weight estimates
for the increased learning gain. At this point, it should be noted that the performance obtained for the
increased learning gain (shown in Figures 3.19 and 3.20) is only obtained by judiciously increasing the
learning gain, and hence, is not guaranteed and is subject to change if the system uncertainties change.

To improve performance and enforce the user-defined bound on the error, the proposed adaptive
controller is then implemented using the same basis function, projection bounds, and P solution as the
standard adaptive control design. The learning gain is set to Y = 0.1 as in the low gain learning gain case of
the standard adaptive control design previously discussed. This allows for better comparison to the standard
adaptive control which was unable to enforce the user-defined performance bound shown in Figures 3.17 and
3.18. The additional parameters for the proposed control are selected as &yin = 0.1, Enax = 100, a = 2, and
Ye = 100 such that the condition given by (3.43) is satisfied. Figures 3.21-3.23 show the proposed controller
performance using the gain varying control. Specifically, Figure 3.21 shows that the tracking performance

is better as compared to the standard adaptive control cases, and Figure 3.22 shows the guaranteed bound
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Figure 3.16: Nominal system error with uncertainty in the control effectiveness.

lle(?)||p < 0.5 is enforced by the error dependent gain term & (7). In addition, Figure 3.23 shows a steadier

adaptive control response as compared to the responses in Figures 3.18 and 3.20 for the standard adaptive

control cases.
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Figure 3.17: Standard adaptive control performance with low learning gain.
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Figure 3.18: System error, adaptive control signal, and weight estimate for low learning gain.
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Figure 3.19: Standard adaptive control performance with increased learning gain.
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Figure 3.20: System error, adaptive control signal, and weight estimate for increased learning gain.
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Figure 3.21: Proposed control tracking performance.
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Figure 3.22: System error and adaptation gain for proposed adaptive control.

3.7 Conclusion

We proposed a direct uncertainty minimization approach that uses modification terms in the adaptive
control law and the update law to suppress the effect of system uncertainty on the transient system response

through a gradient minimization procedure for improved system performance. In addition, the use of a
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200

Figure 3.23: Adaptive control signal and weight estimates for proposed adaptive control.

varying gain on the modification term was shown to keep the system error approximately within a priori
given, user-defined error performance bounds. The proposed approach was then generalized to incorporate
a nonlinear reference model to better capture the desired closed-loop system performance for a class of
nonlinear uncertain dynamical systems. Two illustrative numerical examples and experimental results
were included to demonstrate the efficacy of the proposed adaptive control framework. Future research
will include generalizations of the proposed framework to output feedback adaptive control as well as

applications to large-scale dynamical systems.
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CHAPTER 4: COMPUTING STABILITY LIMITS OF ADAPTIVE CONTROL LAWS WITH
HIGH-ORDER ACTUATOR DYNAMICS'

A challenge in the design of adaptive control laws for uncertain dynamical systems is to achieve sys-
tem stability and a prescribed level of command following performance in the presence of actuator dynamics.
It is well-known that if the actuator dynamics do not have sufficiently high bandwidth, their presence cannot
be practically neglected in the design since they limit the achievable stability of adaptive control laws. In
this paper, we consider the design of model reference adaptive control laws for uncertain dynamical systems
in the presence of high-order actuator dynamics. Specifically, a linear matrix inequalities-based hedging
approach is proposed, where this approach modifies the ideal reference model dynamics to allow for correct
adaptation that is not affected by the presence of actuator dynamics. The stability of the modified reference
model is then computed using linear matrix inequalities, which reveals the fundamental stability interplay
between the parameters of the actuator dynamics and the allowable system uncertainties. In addition, we
analyze the convergence properties of the modified reference model to the ideal reference model. The

presented theoretical results are finally illustrated through a numerical example.

4.1 Introduction

Mathematical models used in feedback control design are often based on first principles of physics
and are derived using fundamental physical laws. However, due to system complexity, idealized assumptions
and simplifications, system uncertainty, and exogenous disturbances, first principle models are often not
accurate to capture the exact physical phenomena that undergo spatial and temporal evolution. To this
end, adaptive control laws have the capability to guarantee system stabilization and a prescribed level of
command following performance for dynamical systems subject to inaccurate mathematical models and
degraded modes of operation [5-7, 93]. Yet, one of the importance challenges in the design of adaptive con-

trol laws for uncertain dynamical systems is to achieve system stability and a prescribed level of command

I"This chapter has been submitted to the journal Automatica for possible publication.
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following performance in the presence of actuator dynamics. It is well-known that if the actuator dynamics
do not have sufficiently high bandwidth, their presence cannot be practically neglected in the design since
they limit the achievable stability of adaptive control laws.

In the literature, while there exist a few approaches to the design of adaptive control laws in the
presence of actuator dynamics (see, for example, [57, 94] and references therein), the constructive nature
of these approaches couple the uncertain dynamical systems with their actuator dynamics, which can result
in imprecise estimation of the system uncertainties for the suppression of their effects — with a notable
exception called the hedging method [30, 31, 33]. In particular, the hedging method enables adaptive control
laws to be designed such that their capability to estimate the system uncertainties are not affected by the
presence of actuator dynamics. This is accomplished by modifying the ideal reference model dynamics with
a hedge signal such that standard closed-loop system dynamics are obtained to allow for correct adaptation
even in the presence of actuator dynamics. Yet, until our recent work [95] focusing on the presence of
first-order actuator dynamics, it has not been analyzed that this modification to the ideal reference model
dynamics does not yield to unbounded reference model responses. Although this is an important result, it is
known that many actuator dynamics utilized in real-world application do not necessarily follow a first-order
model.

In this paper, we consider the design of model reference adaptive control laws with projection
operator for uncertain dynamical systems in the presence of high-order actuator dynamics, unlike our
previous results documented in [95]. To this end, a linear matrix inequalities-based hedging approach is
proposed. Specifically, this approach modifies the ideal reference model dynamics to allow for correct
projection operator-based adaptation that is not affected by the presence of high-order actuator dynamics. To
compute the stability limit of the modified reference model, we utilize linear matrix inequalities, where this
computation reveals the fundamental stability interplay between the parameters of the actuator dynamics and
the allowable system uncertainties through the selection of the projection operator bounds. Moreover, we
analyze, for the first time, the distance between the modified reference model trajectories and ideal reference
model trajectories, and determine a condition for which these trajectories converge to each other. This is
another significant departure from the results documented in not only [95] but also [30, 31, 33]. Finally,
our results do not adopt small-gain type arguments as in [57, 94] in the stability analysis, where it is known

that these small-gain type approaches tend to be more conservative than linear matrix inequalities-based
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approaches (see, for example, [96]). The presented theoretical results of our paper are further illustrated
through a numerical example.

The notation used throughout this paper is fairly standard. Specifically, R denotes the set of real
numbers, R" denotes the set of n x 1 real column vectors, R"*"™ denotes the set of n x m real matrices, R
(resp. R, ) denotes the set of positive (resp., nonnegative) real numbers, R (resp., ﬁrf") denotes the set
of n x n positive-definite (resp. nonnegative-definite) real matrices, (-)T denotes the transpose operator, (-)~!

denotes the inverse operator, tr(-) denotes the trace operator, diag(a) denotes the diagonal matrix with the

vector a on its diagonal, H ’2 denotes the Euclidian norm, H ’F denotes the Frobenius matrix norm, [A]; J
denotes the ij-th entry of the real matrix A € R™™, Ain(A) (resp., Amax(A)) denotes the minimum (resp.,

maximum) eigenvalue of the real matrix A € R"*”, and “£” denotes the equality by definition.

4.2 Mathematical Preliminaries

In this section, we introduce some fundamental results needed to develop the main results of this

paper. We begin with the definition of the projection operator [6].

Definition 4.2.1 Consider a convex hypercube in the form Qo = {90 cR": (G&Fin <Oy < 96‘2“)1-:172’__7”},
where Qy € R", and 9&”“ and 6y respectively represent the minimum and maximum bounds for the
i component of the n-dimensional parameter vector 6y (we set Gé?i“ = —05™ for the results of this
paper without loss of generality). Furthermore, for a sufficiently small positive constant &, consider

another hypercube in the form Q¢ = {90 cR": (96?“ +& < 0y < 05 — 80),-:1727”.7”}, where Q¢ C Q. The

projection operator Proj : R* x R" — R" is then defined component-wise by

<6°i _GOi)yi, if Bo; > 05 — € and y; > 0,

&

Proj(8,y) £ (eo;;f(;?m) Vi, if 60 < 9(‘)?1“ + &y and y; <0,

Vi otherwise,
where y € R".

Remark 4.2.1 Based on Definition 4.2.1 and 05 € Q¢, one can show the inequality (6) —6;)T (Proj (6o,y)
—y) <0, holds for 6y € Qo and y € R" [6]. We use a generalization of this definition to matrices as

Proj,,(®,Y) = (Proj(col; (®),col; (Y))...,Proj(col,(®),col,, (Y))), where ® € R™™, Y € R™™, and col;(-)

64

www.manaraa.com



denotes the i-th column operator. In this case, for a given matrix ©*, it follows that tr | (® —0*)T(Proj . (©,Y)

—Y)} =y, [coli(® — ©)T(Proj(col;(®),col;(¥)) — coli(¥))| < 0. holds.

We now briefly overview the standard model reference control problem in the absence of actuator

dynamics. Consider the uncertain dynamical system given by

x(t) = Ax(t)+Bu(t), x(0)=uxo, 4.1)

where x(¢) € R” is the state vector available for feedback, u(z) € R™ is the control input restricted to the
class of admissible controls consisting of measurable functions, A € R**" is an unknown system matrix,
B € R is a known input matrix, and the pair (A, B) is controllable. In addition, consider the reference

model capturing a desired, ideal closed-loop dynamical system performance

() = Am(t)+Bec(t), x:(0) = x0, 4.2)

where x(¢) € R" is the reference state vector, ¢(t) € R" is a given uniformly continuous bounded command,
A; € R is the Hurwitz reference model matrix, and B, € R"*" is the command input matrix. The objective
of the model reference adaptive control problem is to construct an adaptive feedback control law u(r)
such that the state vector x(z) asymptotically follows the reference state vector x;(f). We now make the
following assumption, which is standard in the model reference adaptive control literature and is known as

the matching condition.

Assumption 4.2.1 There exists an unknown matrix K; € R™*" and a known matrix K, € R™™ such that

A, =A — BK; and B, = BK, hold.

Remark 4.2.2 While Assumption 4.2.1 is a widely-adopted standard assumption in the model reference
adaptive control literature [5-7], several works have considered the case in which the uncertainties are
unmatched, see for example, [13—19] and references therein. The results of this paper can be applied to

those results.

It follows from Assumption 4.2.1 that (4.1) can be written as

x(t) = Awx(t)+Bec(t) +Blu(t) + Wx(t) — Kxc(t)], 4.3)

where W; £ KIT € R™™ is unknown. Now, let the adaptive feedback control law be given by

65

www.manaraa.com



u(t) = —Wl(e)x(r)+ Kac(t), (4.4)
where Wy (1) € R"™™ is the estimate of W; satisfying the weight update law
Wi(t) = iProjy, [Wi(r), x(r)e" (1)PB],  Wi(0) =W, (4.5)

with 71 € R being the learning rate, e(t) = x(¢) — x;(t) being the system error state vector, and P € R"*"

being the solution of the Lyapunov equation given by
0=A'P+PA, +R, (4.6)

R € R*". Note that since A, is Hurwitz, it follows from the converse Lyapunov theory [80] that there
exists a unique P satisfying (4.6) for a given R. In addition, the projection bounds are defined such that
HW] (t)],-j‘ < WLmax,iJr(j,l)n, fori=1,...,nand j=1,...,m, where Wl,max,iJr(jfl)n € R, denotes (symmetric)
element-wise projection bounds. Note that the results of this paper can be trivially applied to the case when
asymmetric projection bounds are considered.

Now, using (4.4) in (4.3) along with (4.2), the system error dynamics can be written as
e(t) = Awe(t)—BW (1)x(1), ¢(0) = eo, (4.7)

where Wy () 2 Wy (1) — W) € R,

Remark 4.2.3 The weight update law given by (4.5) can be derived using Lyapunov analysis by considering

the Lyapunov function candidate given by (see, for example, [5-7])

VieW)) = e Pety ltr WIW,. (4.8)

Note that V(0,0) = 0 and V(e,W;) > 0 for all (e,W;) # (0,0). Now, differentiating (4.8) yields V(e(t),
Wi(t)) < —et(t)Re(t) < 0, which guarantees that the system error state vector e(t) and the weight error
Wi(t) are Lyapunov stable, and hence, are bounded for all t € R... Since x(t) is bounded for all t € R, it
follows from (4.7) that é(t) is bounded, and hence, V(e(t),W;(t)) is bounded for all t € R . It then follows

from Barbalat’s lemma that lim, ..V (e(t), Wi (1)) = 0, which consequently shows that e(t) — 0 as t — oo. It
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should also be noted that owing to the use of the projection operator in the weight update law given by (4.5),
the above discussion can be readily extended to the case of time-varying uncertainties (i.e., W (t) € R™™"
with ||Wi(t)|lg < w and HWl (1) HF <w, we Ry, we R, ) are considered. In this case, the boundedness of
the pair (e(t),W;(t)) follows using (4.8), where the bound on e(t) can be adjusted by the user to achieve a

desired level of performance [6].

4.3 Model Reference Adaptive Control with High-Order Actuator Dynamics

The standard model reference adaptive control formulation overviewed in the previous section has
the capability to suppress the effect of any system uncertainties to achieve desirable tracking performance
specifications, when the actuator dynamics are not present in the closed-loop dynamical system. Building on
the results of the previous section, we now present a new model reference adaptive control design procedure
to ensure guaranteed stability and performance in the presence of high-order actuator dynamics. Specifically,

consider the uncertain dynamical system subject to actuator dynamics given by

x(t) = Ax(t)+Bv(r), x(0)=xo, 4.9)

where v(1) € R™ is the actuator output of the actuator dynamics G given by

Xc(t) = Fxc(t)+Gu(t), x(0)=xc,

v(t) = Hxc(t), (4.10)

with x.(7) € R” being the actuator state vector, G € R”*™ being the actuator input matrix, H € R"*? being
the actuator output matrix, and F € RP*? being Hurwitz such that there exists S € Rﬂxﬂ that satisfies 0 =
FTS+SF+1.

By adding and subtracting Bu(r) and using Assumption 4.2.1, (4.9) can be rewritten as

X(t) = Awx(t)+Bee(t) +Blu(t) + W'x(t) — Koc(t)|+B[v(t) —u(t)]. 4.11)

Based on the hedging approach?, we now consider the modified reference model dynamics given by

2It is known that in the presence of actuator dynamics, not all reference model trajectories can be tracked. Motivated from
this, the hedging method introduces the deficit term “B[v(¢) — u(t)]” to the ideal reference model trajectories such that the resulting
reference model can be tracked by the uncertain dynamical system. For more details, we refer to [30, 31, 33].
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X (1) =Awxe(t) + Bee(t) + B[v(1)—u(r)],  x:(0) = xpo. (4.12)

Now, by considering the uncertain dynamical system subject to actuator dynamics given by (4.11), with the
adaptive feedback control law given by (4.4) and (4.5), and the modified reference model given by (4.12),
the system error dynamics between (4.11) and (4.12) is given in the form of (4.7). This is the result of

introducing the hedging signal B [v(t) —u(t)] to the ideal reference model dynamics.

Assumption 4.3.1 The matrix

R A+BW{(t) BH
.A(W] (t),gA) = s (4.13)

N

-GWl() F
is quadratically stable.

Remark 4.3.1 By definition, (4.13) is quadratically stable if and only if there exists a P > 0 such that
AT (Wi (2),Ga)P + PAW(t),Ga) < O holds [97, 98]. We can use linear matrix inequalities (LMIs) to
satisfy the quadratic stability of (4.13) by following a similar procedure documented in our recent works

[95]. For this purpose, let Wlil . € R"™™ be defined as

yeensd

(_l)iIWl,max,l (_1)i1+"W1,max,l+n (_1)iH(m*l)"Wl,max,l-i-(m—l)n
Wlil“m’ir _ (_1)i2Wl,maX,2 (_1)i2+nWLmax,2+n v (_1)i2+(”l71)nWI ,max,2+(m—])n , (414)
_(_l)i"WI ,max,n (_l)iZ;zWI ,max,2n v (_l)im"WI ,max,mn ]

where i, € {1,2}, r € {1,...,2"™}, such that W i\, Tepresents the corners of the hypercube defining the

maximum variation of W (t). Utilizing the results in [96, 99], if

Ay i = ; (4.15)

which depends affinely on the parameters Wlil ,» satisfies the matrix inequality

Al i P+PA, i, <0, P=P'>0, (4.16)
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.....

(4.13) is quadratically stable. From a practical standpoint, there exist actuator dynamics fast enough such
that (4.16) is satisfied, and hence, we can cast it as a convex optimization problem and solve it using LMIs.

A sufficient condition is provided in Lemma 4.3.1 to support this point.

Now that the quadratic stability of (4.13) in Assumption 4.3.1 can be determined through the use of

LMIs, we present the following proposition.

Proposition 4.3.1 Consider the uncertain dynamical system given by (4.9) subject to Assumption 4.2.1, the
reference model given by (4.12), the actuator dynamics given by (4.10), and the adaptive feedback control
law given by (4.4) along with the update law (4.5). Under Assumption 4.3.1, the solution (e(t), W (t),x:(t),
v(t)) of the closed-loop dynamical system are bounded and lim,_,.e(t) = 0. In addition, the system error
dynamics satisfy the transient performance bound given by
1
le@lle. < (Ami(m(xmaxmue<0>||%+n1\W1<o>\|%))2. (4.17)
Proof. To show Lyapunov stability and guarantee boundedness of the system error and the weight
error, consider the Lyapunov function candidate given by (4.8). Differentiation of (4.8) yields V(e(), Wi (7))
< —eT(t)Re(t) < 0, which guarantees the Lyapunov stability, and hence, the boundedness of the solution
(e(t), Wi (1)).
To show the boundedness of x;(7) and x.(z), consider the reference model (4.12) and the actuator

dynamics (4.10) subject to (4.4) as

%(t) = Aw(t)+B[Hxc(t) + W\ (t)e(t) + W (1)x:(r)], (4.18)
X(1) = Fxe(t) — GWI(t)x.(r) — GW (t)e(t) + GKyc(t), (4.19)

where (4.18) and (4.19) can be rewritten in compact form as

E(t) = AWi(1),Ga)E(1) + (), (4.20)
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with &(1) = [ (¢),x7(r)]T and

BW[' (t)e(t)
o) = . (4.21)
—~GW{ (t)e(t) + GKac(t)

Note that @(-) in (4.20) is a bounded perturbation as a result of Lyapunov stability of the pair (e(t), W, (t)).
Now, it follows that since @(-) is bounded and A(W;(¢),Ga) is quadratically stable by Assumption 4.3.1
(satisfied by LMIs in Remark 4.3.1), then x,(¢) and x(¢) are also bounded [88]. This further implies that the
actuator output v(¢) is bounded.

To show lim,_, e(z) = 0, note that x(¢) is bounded as a consequence of the boundedness of e(r)
and x.(t). It now follows from (4.7) that é(¢) is bounded, and hence, V(e(t),W;(t)) is bounded. As a
consequence of the boundedness of V(e(r),W;(t)) and Barbalat’s lemma [88], lim,_,. V(e(r),W;(¢))= 0,
and hence, lim, ;. e(t) = 0.

Finally, because V(e(t),W;(t)) < 0 for t € R, this implies that V(e(¢),W;(t)) < V(e(0),W;(0)).
Using the inequalities Amin(P)[le(r)[|3 < V(e(r),Wi()) and V(e(0),W1(0)) < Amax(P)]leol3 + 77 '|Wioll
results in

L

el < (5 gy (Amax(P IO+ IW: 0] ) ) (4.22)

Moreover, since || - ||« < || - ||2, and this bound is uniform, then (4.22) yields

1 - 2
¢ <( ( P)[le(0)|12 —lwoz)), 423
lec()]lc. < o (P) Amax (P)|le(0)[I2+ v [[W1 (0) || (4.23)
such that (4.17) is a direct consequence of (4.23) since it holds uniformly in 7. [

Once again, we note that through the use of the LMI analysis highlighted in Remark 4.3.1, the
quadratic stability condition in Assumption 4.3.1 can be achieved for given actuator dynamics, G, and
projection enforced bounds on system uncertainties, VAVLmaxJ +(j—1)n» Such that Proposition 4.3.1 holds. From
a practical understanding, it is expected that there is a fundamental tradeoff between the allowable system
uncertainties and the actuator dynamics. This being that if the system uncertainties are large, the actuator
dynamics need to be fast enough such that close suppression of the system uncertainties through the control

channel is possible, whereas if the the system uncertainties are small, the actuator dynamics can be slower
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and still satisfy the quadratic stability condition in Assumption 4.3.1. To rigorously demonstrate this
practical intuition, in what follows we provide a lemma which uses the following assumption on the form of

the actuator dynamics which holds for a broad set of realistic actuators.

Assumption 4.3.2 The static gain of the actuator dynamics given by (4.10) is unity (i.e., —HF~'G =1)
and F is in Jordan form with the algebraic multiplicity and geometric multiplicity being equal (i.e., F is

diagonal).

With the eigenvalues of F along the diagonal, scaling up all the eigenvalues is the mathematical
equivalent of making the actuator faster, and hence, we let F £ kF,, where k scales the eigenvalues of an

initial actuator state matrix Fy = diag([Fo,,, Fo,,; -+, Fo,,]), with —Fy, € Ry fori=1,---, p. In addition, we

pp
let H = kHy and G = Gy such that the unity static gain of Assumption 4.3.2 is satisfied, where Hy and G
are the initial actuator output and input matrices. Furthermore, since F is in Jordan form, it follows from
Assumption 4.3.2 and 0 = FTS+ SF + I, that § = k' diag ([—Fojll —Fp) e —Fo;:D /22 k1S, where
0= FySo+SoFo+1and Sy € R,

Now, the following lemma provides a sufficient condition to ensure the quadratic stability of As-
sumption 4.3.1. For this purpose, let @ € R, be such that HWl (t)HF < ® and let kK € R, be such that

k<k.

Lemma 4.3.1 Consider the actuator dynamics given by (4.10) subject to Assumption 4.3.2 and the param-

eter dependent matrix AT(Wy(t),Ga) given by (4.13). For the positive definite matrix P given by

P —PBHF™!
P = , (4.24)
—F TH™BTP oS+ F THTBTPBHF™!

with o € R, being a free parameter, there exists a set K| = {k k< k} U {Wl (1) :

Wi (t)HF <@}, such
that for any arbitrary element in the set ki, AT(Wi(t),Ga)P +PAWi(t),Ga) < 0 is satisfied, such that

(4.13) is quadratically stable in the set K.

Proof. We first note that the positive-definiteness of P follows from the positive-definiteness of P,
which is a solution of the Lyapunov equation given by (4.6) with R = I, and the positive-definiteness of the

Schur complement of (4.24) given by
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S = aS+F "H'B'"PBHF~' —F "H'B"P(P)"'PBHF ™!

= aS>0. (4.25)
Now, for the positive definite matrix P, quadratic stability of A(W,(t),Ga) follows if the matrix given by

Q = AT (Wi(t),GaA)P+PAW,(1),Ga)

—I —ATPBHF~' — aW,(1)G'S
_ , (4.26)
* —ol

is negative definite. First, note that —I is clearly a negative-definite matrix. Second, it follows that if the
Schur complement of (4.26) is negative definite, quadratic stability of A(Wj(¢),Ga) holds. That is, we

consider the Schur complement of (4.26) as

S, = —ol+F TH'B"PA,ATPBHF ' + a®>SGW/ (1)W1 (t)G"S

+aF THTBTPAW, (1)G"S + aSGW, (1) ATPBHF ! (4.27)
Note that S5 < 0 if and only if xTS>x < 0 for any vector x # 0. Thus, we can write

Sx < —allx|}+||ATPBHF x||s+ o | Wi ()G Sx| |2

+2a ||ATPBHF x|, || W1 (£)G" Sx] |, - (4.28)
Now, using Young’s inequality [14] on the last term yields
Sx < —at|x|3+2||ATPBHF  x||s + 20 | Wi (1)GSx| . (4.29)

Letting m; 2 2||ATPB]|2, it follows from (4.29) that

2 2 =112 2 A 2 2 2 2
Sx < —allxly+mi |HIE | F R I+ o Wi @) ||z ISIE IGIE 13

e A R O H ol

) 2, - 2 2
W[k IS0l IGlE] - @30

Letting ot > my ||Hol| ||Fy ! H; in (4.30), it follows that x"S>x < 0 when the term o ||W; (1) Hi_k*Z 1S0l17 1| Goll&
is sufficiently small. This is the case if & is sufficiently large or HWl (1) HF is sufficiently small, and hence,
(4.27) is negative-definite when £ is sufficiently large or @ is sufficiently small, which yields the quadratic
stability of (4.13). Finally, since there exist a (sufficiently large) k or a (sufficiently small) @ such that (4.13)

is quadratically stable, the existence of set kj is immediate. |
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Remark 4.3.2 Several things should be noted about the results of Lemma 4.3.1. First of all, it demonstrates
the fundamental tradeoff between the allowable system uncertainties and the actuator dynamics as alluded
to earlier in this section. This being that as the allowable system uncertainties get larger, the speed of the
actuator needs to increase to ensure quadratic stability of A(Wi(t),Ga). It also informs from a practical
standpoint that there exists a feasible starting point at which an LMI search can begin to compute the
minimum feasible boundary. Lastly, even though the assumption of unity static gain is used to find this
feasible starting point, an extension of the LMI search can include the effect of non-unity static gain actuator

dynamics as it searches for the feasible limit.

Remark 4.3.3 Similar to the comment in Remark , the results in this section can be readily extended to
the case in which the system uncertainties are time-varying (i.e., Wi(t) € R with ||W(t)||g < w and
HW1 (1) HF <w, we Ry, we&Ry). While the result in Proposition 4.3.1 changes to the boundedness of the
pair (e(t),W;(t)) in this case, the quadratic stability condition given by (4.13) and satisfied through LMIs
remains exactly the same for time-varying uncertainties. In addition, the feasibility result of Lemma 4.3.1

does not change.

4.4 Convergence Analysis

Stability of the overall closed-loop dynamical system for the proposed model reference adaptive
control architecture with the LMI-based hedging approach is analyzed in the previous section. However,
it is only shown that the distance between the uncertain dynamical system given by (4.9) and the modified
reference model given by (4.12) asymptotically vanishes, where the modified reference model no longer
captures the ideal closed-loop dynamical system behavior due to the presence of the term “B[v(¢) — u(¢)]” in
(4.12). To this end, we now analyze the distance between the uncertain dynamical system and the ideal (i.e.,
unmodified reference model). Since the ideal reference model given by (4.2) is modified in the Section 4.3.3,
such that x,(7) denotes the modified reference model state, we restate the ideal reference model dynamics

with different notation as
i, (t) = A, (t)+Bec(t), x:(0) = x0, (4.31)

where x;, () € R" denotes the ideal reference state vector.
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We begin by defining ere(t) £ x;(t) — x.. () as the error between the modified reference model given

by (4.12) and the ideal reference model now given by (4.31). Note that

le(t) + erer()]| ..

() =2 (1) | .

< le@)llz.. + llerer(t) ] ... (4.32)

which implies that by making the bounds on both of the error signals (i.e., ||e()]| .. and ||eet(2)||2..) small,
the distance between the uncertain dynamical system and the ideal reference model becomes small for all

time.

Remark 4.4.1 Under a realistic assumption that e(0) can be chosen sufficiently small and/or zero, Propo-

sition 4.3.1 shows that ||e(t)||z.. can be made small by judiciously increasing the learning gain ;.

The next proposition shows that ||ew(?)|| .. can be made small if the actuator dynamics are fast,

which is also expected by intuition.

Proposition 4.4.1 Consider the modified reference model given by (4.12), the ideal reference model given
by (4.31), the actuator dynamics given by (4.10) subject to Assumption 3, and the adaptive feedback control
law given by (4.4). If (k,®) € ki, then an upper bound for ||ew(t)|| -_ is given by

S5y?
leaile. = [P (orige ) )

wheren € Ry, p £ 11::((77;))’ and y £ 20 ||SoGo || @

Proof. Making use of the arguments presented in [100], we begin by considering the reference
model error dynamics that follow from the modified reference model (4.12) and the ideal reference model

(4.31) subject to the actuator dynamics (4.10) and the feedback control law (4.4) as

bref(t) = Aperef(t) +Bv(t) — u(t)]

~

= Arerer(t) +B[Hxc(t) + Wi (t)e(t) + W[ (t)erer(t) + W (£)x;, (t) — Kac(2)]. (4.34)

74

www.manaraa.com



In addition, the actuator dynamics (4.10) subject to (4.4) can be written as
%o(t) = Fxe(t)— GW] (t)e(t) — GW{ (t)eres(t) — GWI (t)x, (t) + GKac(t). (4.35)
It follows that (4.34) and (4.35) can be written in compact form as
ety = AWi(r),Ga)e(t) + By (-), (4.36)

with &(t) = [eL:(#),xI (1)]T, B = [BY,—G"|", and @, (-) = W (t)e(t) + W (t)x;,(t) — Kac(t).

Note that o, (+) in (4.36) is bounded as a result of Proposition 4.3.1 and the boundedness of the ideal
reference model (4.31). Furthermore, it follows that A(W;(¢),Ga) is quadratically stable for (k,W; (¢)) € K
by Lemma 4.3.1 such that AT(W;(¢),Ga)P +PA(W(t),Ga) < 0 holds, where P is given by (4.24). This

further implies by compactness that there exists an 17 € R such that
AT (W1 (),GA)P +PAW: (t),Ga) + Nlwip < 0. (4.37)

Now, consider the positive-definite energy function

V) = é'Pe. (4.38)
Differentiating (4.38) and using (4.36) yields
V(er)) = 28 (t)Pér)
= &"(O)[A"Wi(1),Ga)P +PAW(t),Ga)e(r) + 28" (1) PBa (). (4.39)

Using (4.24) and (4.37), one can write (4.39) as
V) < —nle@)ll;+2a|SGllg lxe @)l o ()], (4.40)

Since o (-) consists of bounded terms, it follows that ||w; ()|, < @, where @] € R, and (4.40) can then

be written as
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V) < —nle@];+2ellSGllg x(0)], of
= 1 llerer(t)]13 =1 [Pxe(2) 15 + 20tk [|SoGoll: e (1)1, @]

=~ lewr(t) 3= llxe(@) I, (n b (0)l, ~ &' w), (441)
where W = 20 ||SoGol|r @; . It then follows, similar to [100], that V(&()) < 0 when ||x.(¢)]|, satisfies
y
Ixe(@)lly > e (4.42)

To analyze ||eef(?)||,, first note that the right hand side of (4.41) is concave with a maximum at ||x. ()|, =

%{, such that using this maximum in (4.41) gives the upper bound
. 2, ¥
V(e()) < -n ||€ref(f)||z+4n7- (4.43)
Hence, when ||er(?)||, satisfies
"4
llerer(t)l, > i (4.44)

then V(é(t)) < 0. Using (4.42) and (4.44), it follows that V(&) decreases outside the compact set Q =
{eref ER", xc € R™ ¢ xc (1) ]|, < n—"; and ||erer(t)]], < ka} Next, it follows that V(e) is upper and lower

bounded as Amin(P) [|2(2)[3 < V(&) < Amax(P) ||2(t)|[3, and noting ||ewef(t)||, < ||&(t)]|, it follows that

)‘min(,P)Heref(t)”% < Amax(P) ||eref(t)||§+||x0(t)||§>

< Iun(P) ((n—";)ﬁ (%k)z)

5 2
= Aan(P) ( 4n”{k2) . (4.45)

/N

From (4.45), we compute the bound for ||eef(?)||, as

5y?
leasls < /e () (440

where p = i{“‘m‘f"((g)). Since ||+ || < || - ||2, and this bound is uniform, then (4.46) yields
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52
leasOlle. < o (s ). @47)

such that (4.33) is a direct consequence of (4.47) because it holds uniformly in 7. |
Similar to the discussion in Remark 4.3.3, the system uncertainty is not present in the above analysis,

and hence, the above result also identically holds for time-varying system uncertainties

Remark 4.4.2 Proposition 4.4.1 shows that ||ewt(t)|| c.. becomes small as the actuator dynamics become
fast (i.e., when k is large). Hence, it follows from the results in Propositions 4.3.1 and 4.4.1 as well as the
discussion in Remark 4.3.3 that the upper bound (4.32) on the distance between the uncertain dynamical
system and the ideal reference model can be made small by judiciously increasing the learning gain v, and

utilizing an actuator with fast dynamics.

The next proposition shows that the distance between the uncertain dynamical system given by (4.9)

and the ideal reference model given by (4.31) asymptotically vanishes for constant reference commands (i.e.,

Proposition 4.4.2 Consider the ideal reference model (4.31), the modified reference model (4.12), the
actuator dynamics (4.10) subject to Assumption 4.3.2, and the feedback control law (4.4). If (k,®) € K
and the reference command is constant, the modified reference model (4.12) will asymptotically converge
to the ideal reference model (4.31). In addition, using the results from Proposition 4.3.1, it follows that

x(t) —x;,(t) > 0ast — oo,
Proof. Let @ (-) = BW[ (t)e(t). It follows from (4.18) that

%) = (Ac+BW(t))xe(t) + BHxc(t) + an (). (4.48)
In addition, let w3(-) £ —GW[ (¢)e(t) + GKxc(t). Then, it follows from (4.19) that
Xo(t) = Fxe(t) — GW (£)x:(¢) + 3 (-). (4.49)
Note that (4.49) can be rewritten as
xe(t) = F7'[xc(t) + GW (t)x:(t) — ()], (4.50)
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where it follows from (4.48), (4.50), and Assumption 4.3.2 that
%(t) = Awx(t)+Bc(t)+BHF i (t). (4.51)
Using (4.31) and (4.51), one can write the reference model error dynamics as
ret(t) = Averes(t) + BHF '%.(1), (4.52)

which implies that if %, () — 0 as  — oo, then x,(r) converges to x;, (¢).

Next, (4.49) can be rewritten as

Xe(t) = Fxc(t)+Foqsl(-), (4.53)

where @4() £ 2(-)+ Fq(-), () £ F~ [=GWT(1)x, (1) — W] (1)e(t) + GKac(1)]. and q(-) £ —GWT(1)

-eref(t). Note that (4.53) can be equivalently represented as

X(t) = z(t)+Fz(t)+q(), (4.54)
21(t) = Fzi(t)+Fz(2), (4.55)
L) = Falt)+q(). (4.56)

Letting xo(t) = [eL:(¢), 23 (1), 2] ()], we have

A +BW[r(t) BH| BHF™! 0
Bo() = | —GWIe)  F | 0 |x@)+]| 0 |0 4.57)
0 0 F F
L _ i L7
Ao() By

Note that since the upper left block of Ag(-) is quadratically stable for (k,®) € k; by Lemma 4.3.1, F is

Hurwitz, and Ag(+) is in an upper triangular form, then it follows that xo(z) — 0 as t — oo if 2(r) — 0 as

t —» oo,
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Finally, z(7) can be written for constant command case as
1) = —F ' GIWT(0)xe, (1) + W (1), (1) + WL (1)e(t) + W (1)e(0)]. (4.58)

From Proposition 4.3.1, it follows that Wi (t) = 0 as r — oo. In addition, since ¢(¢) is constant, then it follows
from (4.31) that x,,(r) — 0 as t — co. Moreover, since é(¢) is bounded and é(¢) is uniformly continuous as
a direct consequence of Proposition 4.3.1, then é(z) — 0 as t — oo. This argument shows that z(r) — 0
as t — oo, and hence, xo(f) — 0 as r — oo, which shows that the error between the ideal reference model
(4.31) and the modified reference model (4.12) vanishes as t — co. Finally, from Proposition 4.3.1, we know

e(t) — 0ast — oo, and hence, x(1) — x;,(t) = e(t) + eref(t) — 0 as t — co. [ |

4.5 Illustrative Example

To illustrate the proposed adaptive control architecture in the presence of high-order actuator dy-

namics, we consider the second-order system given by

X1 (Z) 0 1 X1 (l) 0
= +1 ), (4.59)
sz(l‘) 0.5 05 xz(t) 1

with zero initial conditions and let x; (¢) represent the angle in radians and x; () represent the angular rate of

change in radians per second. For the actuator dynamics, we consider

0 1 0
F= , G= , H= [wz 0] . (4.60)
2 n

—o; —2lw, 1
where it is noted that F can be transformed into Jordan form such that Assumption 4.3.1 is satisfied. In
addition, we use a filtered tracking command ¢(¢) and select a reference model with zero initial conditions,
a natural frequency of @, = 0.7 rad/s, and a damping ratio §; = 0.707. For the proposed adaptive control

law, we set R = I,

[Wl(t)}l,l‘ <1.1,and ‘[Wl(l‘)]zﬁl‘ <1.6.
Figure 4.1 shows the feasible region of allowable actuator dynamics which is given by the @, and
¢ values for the actuator dynamics. Note that Figure 4.1 provides both the LMI calculated feasible limit as

well as the feasible limit provided by the simulation results, which correspond to the command profile, initial
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conditions, and other parameters for the provided example. Due to space restrictions, we select two points
to simulate the proposed controller performance as seen in Figures 4.2 and 4.3. Since the feasible boundary
corresponds to calculated minimum feasible @, and { values for the actuator dynamics, it is expected that
the system performances are guaranteed to be bounded for actuator dynamics at points greater than and
equal to the calculated feasible boundary. This can be seen in Figure 4.2 when the actuator dynamics are
at the minimum point (£, @,) = (0.55,2.98), which is located on the feasible boundary. In Figure 4.3,
we let the actuator dynamics be outside the calculated feasible region to show that the closed-loop system
remains bounded until the actuator dynamics reach a value of (§,@,) = (0.55,2.19). This is consistent
with the presented theory, as we provide an upper bound on the allowable actuator dynamics such that the

closed-loop system remains bounded.

14 T T T T
—LMI Limit
12+ 0 (0.55,2.98)
x (0.55,2.19)
10+ + Simulated Limit -
=
£ 8F +
3 +
6r _
4L ,
2 +++++)< | | | L
0 0.5 1 1.5 2 2.5 3

¢

Figure 4.1: LMI calculated feasible region for actuator dynamics.
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Figure 4.2: Proposed controller performance with actuator dynamics ((&, @,) = (0.55,2.98), y; = 25).

" M= =2 It — ()
= —c(t % — Iy
2 2"” 1 —aa@)| £ —an(t)
= 19 — (1) || =0 —as(t) |
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- Ny | “ “ | \ | \ \ | ‘ 15 P S ]
i ol “ Il ‘ ‘ = v
= \ 0] . |
s \ \ I » ~0
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Figure 4.3: Proposed controller performance with actuator dynamics ((£, @) = (0.55,2.19), n =25).

81

www.manharaa.com




4.6 Conclusion

For contributing to the previous studies in adaptive control of uncertain dynamical systems in the
presence of high-order actuator dynamics, we presented an LMI-based hedging approach for computing
the fundamental stability interplay between the bandwidth of actuator dynamics and the allowable system
uncertainties. Specifically, the proposed approach modifies the ideal reference model dynamics using the
hedging method to allow correct adaptation, which is not affected by the presence of actuator dynamics.
We analyzed the stability of this modified reference model coupled with the actuator dynamics using tools
and methods from Lyapunov stability, matrix mathematics, and LMIs. In addition, the distance between the
uncertain dynamical system and the ideal (i.e., unmodified) reference model dynamics were also analyzed
and it was remarked that this distance either can be made small by increasing the learning gain and the
bandwidth of the actuator dynamics or asymptotically vanishes when the uncertain dynamical system is
driven by constant reference commands. An illustrative numerical example demonstrated the efficacy of
the proposed approach in computing stability limits of adaptive controllers in the presence of high-order
actuator dynamics. In future research, we will make extensions to the cases in which the control input is

unknown and/or with the actuator output is unknown.
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CHAPTER 5: GENERALIZATIONS AND APPLICATIONS OF THE LMI-BASED HEDGING
APPROACH FOR HIGH-ORDER ACTUATOR DYNAMICS

This chapter provides additional extensions of the work presented in Chapter 4. Specifically, three
generalizations of the proposed LMI-based hedging approach are considered for i) a class of uncertain non-
linear dynamical systems, ii) unmeasurable actuator outputs, and iii) actuator dynamics with an additional
throughput term with an application for the input time-delay problem. In addition, the method of computing
the actuator parameters is more thoroughly addressed and an application to a hypersonic vehicle model for

different cases of pole-zero actuator dynamics is presented.

5.1 Adaptive Control for a Class of Uncertain Nonlinear Dynamical Systems in the Presence of

High-Order Actuator Dynamics'

Adaptive control is a powerful design methodology to achieve closed-loop system stability in the
face of uncertainties resulting from modeling inaccuracies, degraded modes of operation, and changes in
system dynamics. Yet, it is well known that the presence of actuator dynamics can seriously limit closed-
loop system stability of any adaptive control framework. To address the problem of adaptive control design
in the presence of actuator dynamics, we recently introduced a linear matrix inequalities-based adaptive
control framework. The key feature of this approach is to reveal the fundamental stability interplay between
the parameters of a given actuator dynamics model and the allowable uncertainties in the feedback loop.
The contribution of this paper is to generalize our recent work for a class of uncertain nonlinear dynamical
systems. Specifically, for a given high-order, linear time-invariant actuator dynamics model, we utilize
tools and methods from Lyapunov stability and linear matrix inequalities for the computation of closed-
loop system stability limits of adaptive control laws. An illustrative numerical example is also provided to

demonstrate the efficacy and the practicality of the proposed design architecture.

IThis section is previously published in [101]. Permission is included in Appendix B. The omitted proofs follow readily from
Chapter 4.
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5.1.1 Introduction

Adaptive control is a powerful design methodology to achieve closed-loop system stability in the
face of uncertainties resulting from modeling inaccuracies, degraded modes of operation, and changes in
system dynamics. Yet, it is well known that the presence of actuator dynamics can seriously limit closed-
loop system stability of any adaptive control framework. In particular, if the actuator dynamics do not have
a sufficiently high bandwidth and/or for safety-critical applications of adaptive control laws, closed-loop
system stability verification steps must be considered for precisely showing the safe actuator bandwidth
limits such that adaptive control laws perform theoretically correct.

To address the problem of adaptive control design in the presence of actuator dynamics, we recently
introduced a linear matrix inequalities-based adaptive control framework [95, 102-104]. Our framework
is predicated on a hedging method originally proposed by the authors of [30, 31, 33], where this method
modifies the ideal reference model dynamics to allow for theoretically correct adaptation that is not affected
by the presence of actuator dynamics. Specifically, our results documented in [95, 102—-104] show that
this modification to the ideal reference model dynamics does not yield to unbounded reference model
responses. The key common feature of these results is to reveal the fundamental stability interplay between
the parameters of a given actuator dynamics model and the allowable uncertainties in the feedback loop.

The contribution of this paper is to generalize our recent work documented in [95, 102—-104] for a
class of uncertain nonlinear dynamical systems. Specifically, we first use Lyapunov stability to show closed-
loop system stability predicated on a quadratic stability condition. We then utilize linear matrix inequalities
to perform a computation to assess when this stability condition holds for a given high-order, linear time-
invariant actuator dynamics model and bounds of parameters resulting from uncertainty parameterization.
An illustrative numerical example is also provided to demonstrate the efficacy and the practicality of the
proposed design architecture.

The contents of the paper are as follows. Section 5.1.2 presents the mathematical preliminaries
necessary for the main results of this paper. In Section 5.1.3, we present the proposed linear matrix
inequalities-based adaptive control approach predicated on the hedging method for a class of uncertain
nonlinear dynamical systems in the presence of high-order, linear time-invariant actuator dynamics. The
illustrative numerical example is provided in Section 5.1.4 and conclusions are summarized in Section

5.1.5. Finally, we use a fairly standard notation throughout this paper. Specifically, R denotes the set of
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real numbers, R” denotes the set of n x 1 real column vectors, R"*" denotes the set of n x m real matrices,
R (resp. EJF) denotes the set of positive (resp., nonnegative) real numbers, Rf’ﬁ" (resp., @T") denotes the
set of n x n positive-definite (resp., nonnegative-definite) real matrices, D"*" denotes the set of n x n real
matrices with diagonal scalar entries, (-)T denotes the transpose operator, tr(-) denotes the trace operator,

and “£” denotes the equality by definition.

5.1.2 Preliminaries

Some necessary mathematical preliminaries are introduced in this section briefly that are needed to

develop the main results of this paper.

Definition 5.1.1 Let
Q={0€R": (6™ <6 <O™)i_12..n} (5.1)

be a convex hypercube in R", where (0", 0™ represent the minimum and maximum bounds for the i

component of the n-dimensional parameter vector 0. In addition, let
Qe={0cR": (6™ +£<6<O™ —€)i_i2...} (5.2)

be a second hypercube for a sufficiently small positive constant €, where Q¢ C Q. Then, the projection

operator Proj : R* x R" — R" is defined component-wise by

€

(91-‘"“*91') yi, if6;>6"* —eandy; >0

Proj(6,) £ 4 (2%) v, if 6 < OP € and yi < 0 (5.3)

€

Vi otherwise
where y € R" [6].

As a consequence of the above definition, note that

(6 —6%)T(Proj(0,y) —y) <0, 6% €Q, (5.4)
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holds [6, 82]. Note that we use the generalization of this definition to matrices throughout this paper as

Proj,,(®,Y) = (Proj(col; (®),col;(Y)), . . . ,Proj(col,(©),col,(Y))), (5.5)

where @ € R Y € R™", and col,(-) denotes the i-th column operator. In this case, for a given @*, it

follows from (5.4) that

on

r [(@ — ©")T(Proj, (0,Y) — Y)] - [col,(@ — ©")T(Proj(coli(®), col; (¥)) — coly(¥)) | <0, (5.6

i=1

holds.
For a concise overview of the standard model reference adaptive control problem, consider a class

of uncertain nonlinear dynamical systems G given by

x(t) = Ax(t)+Blu(t)+06(x(r))], x(0)=xo, (5.7)

where x(r) € R”" is the state vector available for feedback, u(z) € R™ is the control input restricted to the
class of admissible controls consisting of measurable functions, 0 : R* — R™ is an uncertainty, A € R"*" is

a known system matrix, B € R is a known input matrix, and the pair (A, B) is controllable.

Assumption 5.1.1 The uncertainty in (5.7) is parameterized as

S(x(t)) = WTo(x(t), x(r)eR", (5.8)

where W € R**™ is an unknown weight matrix and o : R" — R’ is a known basis function of the form

o(x(t)) = [o1(x(t)), 02(x(¢)), . .., 05(x(t))]T, which satisfies

o(x(t)) = K(()x(t)+b(x(r)), K:R' R  p:R" R, (5.9)

with b(x(t)) being a bounded term. In addition, (5.9) satisfies the inequality given by

lo(x(1)) ool < elx@)], x()eR", (5.10)

with op € R, and ot e R,
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Next, consider the reference model capturing a desired, ideal closed-loop dynamical system perfor-

mance given by
X(t) = Ax(t)+Bec(t), x:(0) = x0, (5.11)

where x, (1) € R" is the reference state vector, ¢(t) € R™ is a given uniformly continuous bounded command,
A, € R™" is the Hurwitz reference model matrix, and B, € R"*™ is the command input matrix. The objective
of the model reference adaptive control problem is to construct a feedback control law architecture u(r) such
that the state vector x(¢) asymptotically (or approximately) follows the reference state vector x; (7).

For the purpose of solving this problem, consider the feedback control law given by
ult) = un(t)+ua(t), (5.12)

where u,(¢) and u,(t) are the nominal feedback control law and the adaptive feedback control law, respec-

tively. Let the nominal feedback control law be given by
un(t) = —Kix(t)+ Kye(t), (5.13)

where K} € R™*" and K, € R™*" are the nominal feedback and the nominal feedforward gains, respectively,

such that A; = A — BK| and B; = BK, hold. Using (5.12) and (5.13) in (5.7) with Assumption 5.1.1 yields
i) = Awx(t) 4 Bec(t) + Blua(t) + Who(x(r))]. (5.14)
Now, let the adaptive feedback control law be given by
uy(r) = —-WrHe)o(x(r)), (5.15)
where W () € R* is the estimate of W satisfying the weight update law

W(t) = yProj,[W(), o(x(t))e"()PB], W(0) =W, (5.16)
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where y € R is the learning rate gain, e(¢) = x(t) — x;(t) is the system error state vector, and P € R"" is a

solution of the Lyapunov equation
0=A'P+PA, +R, (5.17)

with R € R*". Note that since A, is Hurwitz, it follows from the converse Lyapunov theory that there exists

a unique P satisfying (5.17) for a given R. In addition, the projection bounds are defined such that

HW(f)]ij‘ < Wmax,z#(jfl)sv (5.18)

fori=1,...,s and j = 1,...,m, where Wmaxﬁ( j—1)s € Ry denotes (symmetric) element-wise projection
bounds. Note that the results of this paper can be readily applied to the case when asymmetric projection
bounds are considered.

Now, using (5.15) in (5.14) along with (5.11), the system error dynamics can be written as
() = Awe(t)—BW'(1)o(x(t), (0)=eo, (5.19)

where W(t) £ W(t) — W € R**™. Note that the weight update law given by (5.16) can be derived using

Lyapunov analysis by considering the Lyapunov function candidate given by (see, for example, [6])
V(W) = ePe+y luWiW. (5.20)

Note that V(0,0) = 0 and V(e,W) > 0 for all (e, W) # (0,0). Now, differentiating (5.20) yields V(e(t),
W(t)) < —e'(t)Re(t) < 0, which guarantees that the system error state vector e(¢) and the weight error W (¢)
are Lyapunov stable, and hence, are bounded for all # € R, Since 6(x(t)) = o(e(t) +x;(t)) is bounded for
allt € Ry as a consequence of the fact that e(¢) and x;(¢) are bounded for all r € R, it follows from (5.19)
that ¢(¢) is bounded, and hence, V(e(t),W(t)) is bounded for all ¢ € R... It then follows from Barbalat’s
lemma that lim;_,.. V(e(t),W (¢))= 0, which consequently shows that e(r) — 0 as # — oo,

The above discussion highlights that the adaptive control formulation introduced in this section has

the capability to suppress the effect of any nonlinear system uncertainty satisfying (5.8) to achieve desirable
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command following performance specifications. Yet, it provides no guarantees in the presence actuator
dynamics that appear in any practical application of feedback control laws.

In order to reach to the conclusion highlighted above, it should be noted that one does not necessarily
need (5.9) and (5.10) given for the uncertainty parameterization in (5.8). However, they are necessary to
utilize linear matrix inequalities (LMIs) in the next section with the proposed hedging-based adaptive control
framework for ensuring closed-loop system stability in the presence of high-order, linear time-invariant

actuator dynamics.

5.1.3 Closed-Loop Adaptive Control System Stability with Actuator Dynamics

Building on the mathematical preliminaries overviewed in Section 5.1.2, we now introduce the ac-
tuator dynamics problem and the LMIs-based adaptive control approach predicated on the hedging method.

Specifically, consider the uncertain nonlinear dynamical system G given by

x(t) = Ax(t)+B[v(r)+6(x(2))], x(0)=xo, (5.21)

where v(t) € R™ is the actuator output of the actuator dynamics G satisfying a high-order, linear time-

invariant model

Xo(t) = Fx.(t) +Gu(t), x.(0) = xco,
(5.22)
v(t) = Hx.(t),

with x.(¢) € R” being the actuator state vector, G € R”*™ being the actuator input matrix, H € R™*? being
the actuator output matrix, and F € R”*? being a Hurwitz matrix in Jordan form such that there exists
Se Rﬁxl’ that satisfies 0 = FTS+SF + 1. Note that we say F in Jordan form without loss of generality since
state-space representations of differential equations are not unique. Throughout this paper, we inherently
assume that the algebraic multiplicity of F is equal to its geometric multiplicity and —HF ~'G =I.

It follows from Assumption 5.1.1 that (5.21) can be equivalently rewritten as
x(t) = Ax(t)+B[u(t)+ W (t)o(x(t))]+B[v(t) —u(t)]. (5.23)
Using the feedback control given by (5.12), (5.13), and (5.15) in (5.23) yields

X(t) = Awx(t)+Bec(t)—BW' (t)o(x(t)) +B[v(t) —u(t)]. (5.24)
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Utilizing the hedging approach originally proposed in [30, 31, 33], let the modified reference model dynam-

ics be given by

xr(t) = Arxr([)+BrC(t)+B[v(t) _u(t)]v Xr(O) = Xr0, (5.25)
such that the system error dynamics follow from (5.24) and (5.25) as
é(t) = Awe(t) —BWT(t)o(x(r)), e(0)= ep. (5.26)

Notice that (5.26) is identical to the system error dynamics given by (5.19) due to the fact that the hedging
signal B|v(t)—u(t)] is introduced to the ideal reference model dynamics, and hence, the system error
dynamics are not affected due to the presence of high-order, linear time-invariant actuator dynamics.

The following two lemmas are needed for the results in this section. For this purpose, let 8 (¢, x(r)) £
WT(¢)K(x(t)), let @ € R, be such that Wmax7i+(j71)s <wforalli=1,...,sand j=1,...,m,and letk; € Ry,
k; € Ry, and k € Ry be such that ky <k, k; <k, and k < k, where k scales the eigenvalues of G (this implies

that we let F £ kFy, H £ kHy, G £ Gy).

Lemma 5.1.1 There exists a set k = {k: k <k} U {@,ky: Wnaxis(j1)s <@, i=1,....5, j=1,....m
and ky < k} such that if (k,®,ky) € « and K(x(t)) is bounded, then
A+BO(1,x(t)) BH

A(0(1,x()),Gn) = ) (5.27)
—GK; —GO(t,x(t)) F

is quadratically stable.

Proof. Due to page restrictions, the proof is omitted. |
Consistent with our prior work [95, 102-104], Lemma 5.1.1 reveals the fundamental stability inter-
play between the allowable system uncertainties (through the selection of the projection operator bounds)

and the bandwidth of the high-order actuator dynamics.
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Lemma 5.1.2 There exists a set K| = {kl k< k}, such that if k; € i, then

A BH
A(Ga) = ; (5.28)
—-GK, F
is quadratically stable.
Proof. Due to page restrictions, the proof is omitted. |

The results given in Lemma 5.1.1 are predicated on the boundedness of K (x(¢)), where this automat-
ically holds in our case as shown as a part of the proof of the next theorem presenting the main contribution

of this paper.

Theorem 5.1.1 Consider the uncertain nonlinear dynamical system given by (5.21) subject to Assumption
5.1.1, the reference model given by (5.25), the actuator dynamics given by (5.22), and the feedback control
law given by (5.12), (5.13), and (5.15) along with the update law (5.16). If

(k,@,ky) €k, k| €Ky, (5.29)

then the solution (e(t),W (t),x;(t),v(t)) of the closed-loop dynamical system are bounded and

lime(r) = 0. (5.30)

t—ro0

Proof. To show Lyapunov stability and guarantee boundedness of the system error state e(7) and the
weight error W (¢), consider the Lyapunov function candidate given by (5.20). Differentiating (5.20) yields
V(e(t),W(r)) <
the solution (e(z),W (t)).

—eT(t)Re(t) < 0, which guarantees the Lyapunov stability, and hence, the boundedness of

To show the boundedness of x;(¢) and x.(7) (and therefore v(¢)), consider the reference model (5.25)
and the actuator dynamics (5.22) subject to (5.12), (5.13), and (5.15) as x;(t) = Ax.(t) + B [ch (t)+Kie(t)+
WT(1)o(x(1))], and kc(t) = Fx(t) — GKix:(t) — GK,(t)e(t) + GKac(t) — GWT (t)o (x(¢)), these dynamics

can be rewritten in compact form as

E(t) = AGAEWN) +C()+w(), (5.31)
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with

@) = K@)x@], (5.32)
and
¢() = BV e Gt , (5.33)
—GWT(1)o (x(1))
o) = Bel) . (5.34)
_—GKle(t)+GK2(,‘(t)

Note that @(-) in (5.31) is a bounded perturbation for all # € R, as a result of the boundedness of the signals
e(t) and W(¢) for all # € R, In the remainder of the proof, we consider two cases.
In Case 1, for ||x(7)|| < €, we use Assumption 5.1.1 and let K(x(¢)) = 0 such that o (x(z)) = b(x(t))

and is therefore bounded for all t € RJF. It then follows that (5.31) can be rewritten as

E(t) = AGa)E(M)+o(), (5.35)

with
BWT(t)b(x(t)) + BKe(t)

()= . (5.36)
—GWT(t)b(x(t)) — GKye(t) + GKyc(t)

Now, it follows that since @(-) is bounded for all # € R, and .A(Ga) is quadratically stable for k, € k; by
Lemma 5.1.2, then x,(¢) and x.(¢) are also bounded [88]. This further implies that the actuator output v(¢) is
bounded.

In Case 2, we now consider ||x(¢)|| > €. For this purpose, once again, we use Assumption 5.1.1 and

let b(x(¢)) = 0 such that

o(x(1)) = K(x(1))x(t). (5.37)
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We first show that K (x(¢)) is bounded for all € R,.. Specifically, it follows from (5.37) that

[Kx@)x@)l _ lloG@)ll
[lx ()] NEOIR
_ [e(x(#)) =00+ 00l
[[x ()]
|lo(x(#) — ool , [looll
= @l T
alx®] | ool
SOOI (39
Taking the supremum of both sides yields
K(x(t))x
SuplX(t)#O”(”)(:(% = SuPIIX(t)||#0(a+%>’ (5.39)
which further implies
k(o)) <ar 120 (5.40)

for ||x(¢)|| > &, and hence, K (x(t)) is bounded for all r € R, .

Next, the matrix {(+) in (5.31) can be rewritten as

o = BW (1)K (x(1)) (x:(t) + (1)) ‘ (5.41)

—GWT (1)K (x(t)) (x:(t) +e(t))

Note that since W(t) is bounded for all # € R as a result of the projection based weight update law and the

boundedness of K (x(¢)) forallt € R,
O(t,x(t)) = W' (1)K (x(1)), (5.42)
is bounded for all € R and it follows from (5.41)

‘0 = BO(t,x(1)) (x:(t) +e(t)) | 543

—GO(1,x(1)) (xc(t) +e(t))
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Then, using (5.43), (5.31) can be rewritten as

E(t) = A(B(t.x(1),Ga)E (1) + @), (5.44)
with

BO(1,x(1))e(t) + BKe(t)
o(-) = : (5.45)

—GO(1,x(1))e(t) — GKe(t) + GKc(r)

Now, as in Case 1, it follows that since (-) is bounded for all r € Ry and A((z,x(t)),Ga) is quadratically
stable for (k, @,k,) € k by Lemma 5.1.1, then x,(¢) and x.(¢) are also bounded for all € R, which further
implies that the actuator output v(¢) is bounded for all t € R, .

To show lim, .. e(t) = 0, note that x(¢) is bounded for all # € R, as a consequence of the bound-
edness of e(t) and x.(¢) for all # € R for both cases. It now follows from (5.26) that é(¢) is bounded for
all t € R, and hence, V(e(t),W(t)) is bounded for all # € R,. As a consequence of the boundedness of
V(e(r), W (r)) and Barbalat’s lemma [88], lim_,. V(e(t), W (¢) )= 0, and hence, lim,_,.. (1) = 0. [ |

To satisfy the quadratic stability of (5.27), we can utilize LMIs by following a similar procedure

documented in our recent works [95, 102—104]. For this purpose, let W,-l iy € R¥ be defined as
(_l)il Amax.l (_l)iHSWmax,lJrs (_1)il+(m71)‘YWmax,l+(m—l)s
_ (_l)iz Amax.Z (_l)izﬂwmax,ZJrs e (_l)izﬂmil)‘Y Amax,2+(m—l)s
Wi = . . . , (5.46)
(_ 1 )ix Wmax,n (_ 1)i25 Wmax,2s s (_ 1 )im Wmax,ms

where i; € {1,2}, [ € {1,...,2"}, such that W, _; represents the corners of the hypercube defining the

.....

maximum variation of W (¢). Furthermore, since we define 8(z,x(r)) £ W' (1)K (x(t)), let 6;,._;, € R™*" be
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defined as

(_1)il émax,l (_1)i1+m émax,ler e (_1)i1+(n71)m éma)(.,l—',—(n—l)m

_ (_ 1 )iz émax,Z (_ 1 )iHm éInax,Zer s (_ 1>i2+("71)m émax,2—',—(n— 1)m

0i,...i, = ; (5.47)
(_ 1)im émax,n (_ 1 )izm éInax,Zm v (_ 1)i’1m émax,nm

-----

Ay i = ’ ; (5:48)

gooey

satisfies the matrix inequality
Al i P+PA;,, <0, P=P'>0, (5.49)

for all permutations of ;,_; , then (5.27) is quadratically stable. Since it can be readily shown that (5.27)

is quadratically stable for large values of k, we can cast (5.49) as a convex optimization problem and solve

it using LMIs.

5.1.4 Illustrative Numerical Example

In order to illustrate the proposed LMIs-based adaptive control architecture predicated on the hedg-

ing method, we consider the second-order uncertain nonlinear dynamical system given by

x1(t) 0 1 [x1(2) 0
- + || (1) +8(x(0))), (5.50)
Xo(1) L1] [xf(f) 1

with zero initial conditions, where x;(¢) represents the angle in radians and x,(z) represents the angular
rate of change in radians per second. Here, in addition, §(x(z)) represents an uncertainty of the form

O(x) = Bixa(¢)sin(x; (¢)) + Boxi (t)cos(x2(2)), where B;, i = 1,2, are unknown.
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For the actuator dynamics, we consider the second-order model given by

0 1 0
F= ;o G= ; HZ[(»Z 0], (5.51)
—0? 2w, 1
where it is noted that F' can be trivially transformed into Jordan form.
For our numerical example, we set ; = B, = 1 and choose K| = [2,2.4] and K, = 1 for the nominal
controller design that yields to a reference model with a natural frequency of @, = 1.0 rad/s and a damping

ratio §; = 0.7, which yields
A = . B=| |. (5.52)

In addition, we use a filtered tracking command ¢(¢) and we set R = I, from (5.17) for the proposed adaptive
controller design. Using the rectangular projection operator, the bounds on the uncertainty are set element-
wise such that | [W(r)];,1| < 1.1 with i = 1,2. We set all initial conditions to zero such that Assumption 5.1.1
is satisfied with o = 1. Using this along with the bounds on W (¢) in the LMI analysis highlighted in Section
I, the feasible region of allowable actuator dynamics is calculated.

Figure 5.1 shows the feasible region of allowable actuator dynamics that is given by the @, and {
values for the actuator dynamics. Note that Figure 5.1 provides both the LMI calculated feasible limit as
well as the feasible limit provided by the simulation results. Due to space restrictions, we select two points
to simulate the proposed controller performance as seen in Figures 5.2 and 5.3. Since the feasible boundary
corresponds to calculated minimum feasible @, and { values for the actuator dynamics, it is expected that
the system performances are guaranteed to be bounded for actuator dynamics at points greater than and
equal to the calculated feasible boundary. This can be seen in Figure 5.2 when the actuator dynamics are at
the minimum point (£, @,) = (0.525,5.28), which is located on the feasible boundary. In Figure 5.3, we let
the actuator dynamics be outside the calculated feasible region to show that the closed-loop system remains
bounded until the actuator dynamics reach a value of (£, @,) = (0.525,3.46). This is consistent with the
presented theory, as we provide a (conservative) upper bound on the allowable actuator dynamics such that

the closed-loop system remains bounded.
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Figure 5.1: LMI calculated feasible region for actuator dynamics.
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Figure 5.2: Proposed controller performance with actuator dynamics ((£, @) = (0.525,5.28), y=25).
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Figure 5.3: Proposed controller performance with actuator dynamics ((£, @,) = (0.525,3.46), v = 25).

5.1.5 Conclusion

Although adaptive control is a powerful design methodology to cope with a broad spectrum of
uncertainties, the presence of actuator dynamics can seriously limit achievable closed-loop adaptive control
system stability in any practical application. For addressing this problem, we considered a class of uncertain
nonlinear dynamical systems in this paper and presented a LMI-based adaptive control framework predi-
cated on the hedging method to ensure closed-loop system stability in the presence of high-order, linear
time-invariant actuator dynamics. In addition to rigorously analyzing the overall stability of the proposed
framework, which revealed the fundamental stability interplay between the parameters of a given actuator
dynamics model and the allowable uncertainties in the feedback loop, we also provided an illustrative
numerical example to demonstrate its efficacy and practicality. Finally, although this paper considered a
particular adaptive control formulation, namely model reference adaptive control architecture, the presented

design methodology can be used in a complimentary way with many other approaches to adaptive control.
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5.2 A Model Reference Adaptive Control Framework for Uncertain Dynamical Systems with High-
Order Actuator Dynamics and Unknown Actuator Outputs’

As it is well-known, the stability properties of model reference adaptive controllers can be seri-
ously affected by the presence of actuator dynamics. To this end, the authors recently proposed linear
matrix inequalities-based hedging approaches to compute the stability limits of model reference adaptive
controllers in the presence of a) scalar actuator dynamics with known outputs, b) scalar actuator dynamics
with unknown outputs, and c) high-order (linear time-invariant) actuator dynamics with known outputs.
The common denominator of these approaches is that they have the capability to rigorously characterize
the fundamental stability interplay between the system uncertainties and the necessary bandwidth of the
actuator dynamics.

Building on these results, the purpose of this paper is to extend the recent work by the authors to the
general case, where there exist high-order actuator dynamics with unknown outputs in the closed-loop model
reference adaptive control systems. For this purpose, we propose an observer architecture to estimate the
unknown output of the actuator dynamics and use the estimated actuator output to design the linear matrix
inequalities-based hedging framework. Remarkably, with the proposed observer, the sufficient stability
condition in this case of unknown actuator outputs is identical to the case with known actuator outputs
that was established in the prior work by the authors. Therefore, a control designer can utilize the proposed
framework for practical applications when the output of the actuator dynamics is not measurable, and hence,
unknown (e.g., in hypersonic vehicle applications). An illustrative numerical example complements the

proposed theoretical contribution.

5.2.1 Introduction

While model reference adaptive controllers have the capability to suppress the effect of wide classes
of system uncertainties to achieve desired stabilization and command following system performances, it is
well-known that their stability properties can be seriously affected by the presence of actuator dynamics
(e.g., see [95] and references therein). To address this issue, the authors recently proposed linear matrix
inequalities (LMI)-based hedging approaches, where the hedging technique [30, 31, 33] modifies the ideal
reference model dynamics in order to allow correct adaptation that is not affected by the presence of actuator

dynamics, and then LMIs are used to compute the stability limits of model reference adaptive controllers in

2This section is previously published in [105]. Permission is included in Appendix B.
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the presence of a) scalar actuator dynamics with known outputs, b) scalar actuator dynamics with unknown
outputs, and c) high-order (linear time-invariant) actuator dynamics with known outputs [95, 101-104].
These recent approaches have the capability to rigorously characterize the fundamental stability interplay
between the system uncertainties and the necessary bandwidth of the actuator dynamics, and hence, allow
safe implementation of model reference adaptive control systems for many real-world practical systems
having actuator dynamics.

Building on our recent results documented in [95, 101-104], the main contribution of this paper is
to extend the recent work by the authors to the general case, where there exist high-order actuator dynamics
with unknown outputs in the closed-loop model reference adaptive control systems. For this purpose, we
propose an observer architecture to estimate the unknown output of the actuator dynamics and use the
estimated actuator output to design the LMI-based hedging framework. Remarkably (consistent with the
results established for scalar actuator dynamics case[95, 102, 103]), the sufficient stability condition in
this case of unknown high-order actuator outputs is identical to the case with known high-order actuator
outputs that was established in the prior work by the authors [104]. Therefore, a control designer can
utilize the proposed framework for practical applications when the output of the actuator dynamics is not
measurable, and hence, unknown (e.g., in hypersonic vehicle applications). Although the proposed results
in this paper focus on a particular model reference adaptive control framework, the results allowing for safe
implementation of adaptive control systems can be readily applied to many other control designs such as
[35, 75, 106—-113] for improved performance.

In this paper, R denotes the set of real numbers, R" denotes the set of n x 1 real column vectors,
R™™ denotes the set of n x m real matrices, R, (resp. R,) denotes the set of positive (resp., nonnegative)
real numbers, R"*" (resp., @T"} denotes the set of n X n positive-definite (resp. nonnegative-definite) real
matrices, S denotes the set of n x n symmetric real matrices, D"*" denotes the set of n x n real matrices

with diagonal scalar entries, (-)T denotes the transpose operator, (-)~! denotes the inverse operator, tr(-)

denotes the trace operator, H ‘2 denotes the Euclidian norm, denotes the Frobenius matrix norm, [A];;

g
denotes the ij-th entry of the real matrix A € R, and Anin(A) (resp., Amax (A)) denotes the minimum (resp.,
maximum) eigenvalue of the real matrix A € R"*".

The organization of this paper is as follows. Section 5.2.2 covers the mathematical preliminaries

necessary for the presented results in the paper. Section 5.2.3 introduces the proposed LMI-based hedging

approach for uncertain dynamical systems subject to high-order actuator dynamics with unknown actuator
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outputs. An illustrative numerical example is provided in Section 5.2.4 to demonstrate the efficacy of the

proposed approach and conclusions are summarized in Section 5.2.5.

5.2.2 Mathematical Preliminaries

Consistent with our prior work [95, 101-104], we utilize projection operators in the design of
model reference adaptive controllers throughout this paper (see below). As a consequence, we start with

its following definition.

Definition 5.2.1 Ler Q= {9 €R": (gMin < g; < o) }, i=1,2,--- ,nbeaconvex hypercube in R", where
(GZmi“,GimaX) represent the minimum and maximum bounds for the i™ component of the n-dimensional
parameter vector 0. In addition, let Q. = {9 eR™: (gMin g < §; < g —8)}, i=1,2,---,n be a
second hypercube for a sufficiently small positive constant €, where Q¢ C Q. Then, the projection operator

Proj : R" x R" — R" is defined component-wise by

(91-"”;—9" ) yi, if6; >0 —¢gandy; >0

Proj(6,y) 2 (91'*9;“““) Yis  if 6 < 0™+ g andy; <0 (5.53)

€

Vi, otherwise
wherey € R" [6].

Based on the above definition, we note that
(8 —6")"(Proj(8,y) —y) <0, 6% €Q,, (5.54)
holds [6, 82]. In this paper, we use the generalization of this definition to matrices as
Proj,,(®,Y) = (Proj(col; (®),col; (Y)), . . . ,Proj(col,(®),col,(Y))),

where ® € R™ Y € R™™ and col,(-) denotes the i-th column operator. For a given ®*, it now follows

from (5.54) that

(g E

tr [(@ — 0T (Proj, (0,Y) — Y)] - [coli(@) — ©")T(Proj(coli(®), col; (¥)) — col;(¥)) | < 0. (5.55)

i=1
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For completeness, we next present a concise overview of the standard model reference adaptive

control problem. To this end, we consider the uncertain dynamical system given by
x(t) = Ax(t)+Bu(t), x(0)=xo, (5.56)

where x(r) € R” is the measurable state vector, u(t) € R™ is the control input, A € R"*" is an unknown
system matrix, B € R is a known input matrix, and the pair (A,B) is controllable. In addition, we

consider the (ideal) reference model given by
X(t) = Ax(t) +Bec(t), x:(0) = x0, (5.57)

where x,(1) € R" is the reference state vector, ¢(t) € R” is a given uniformly continuous bounded command,
A, € R™" is the Hurwitz reference model matrix, and B, € R"*" is the command input matrix. The objective
of the model reference adaptive control problem is to construct an adaptive feedback control law u(z) such
that the state vector x(¢) asymptotically follows the reference state vector x; (7).

We now make the following assumption, which is standard in the model reference adaptive control

literature and is known as the matching condition [5-7].

Assumption 5.2.1 There exists an unknown matrix K; € R™*" and a known matrix K, € R™" such that

A, = A — BK; and B, = BK; hold.

Next, (5.56) can be rewritten based on Assumption 5.2.1 as
X(t) = Awx(t)+Bee(t) + Blu(t) + Wx(t) — Kac(1)], (5.58)
where W £ K[ € R is unknown. Now, we choose the adaptive feedback control law as
u(t) = =W (e)x(r)+ Kac(t), (5.59)
where W (t) € R"™™ is the estimate of W satisfying the weight update law

W(t) = vyProj, [W(t), x(t)e" (t)PB], W(0) =W, (5.60)
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with y € R, being the learning rate, e(t) = x(t) — x,() being the system error state vector, and P € R""

being the solution of the Lyapunov equation given by

0=A'P+PA, +R, (5.61)

R € R, Note that since A, is Hurwitz, it follows that there exists a unique P satisfying (5.61) for a given

R [80]. For (5.60), the projection bounds are defined such that

[W(Z)]ij‘ < Wmax,iJr(jfl)nv (5.62)

fori=1,...,nand j=1,...,m, where Wmaxﬁ( j—1n € Ry denotes (symmetric) element-wise projection
bounds.

Finally, using (5.59) in (5.58) along with (5.57), the system error dynamics can be written as
é(t) = Awe(t) —BWT(1)x(t), e(0)= e, (5.63)

where W (1) £ W(t) — W € R™. Note that the weight update law given by (5.60) can be readily derived

using Lyapunov analysis by considering the Lyapunov function candidate given by (see, for example, [5-7])

V(W) = ePe+y e WiW, (5.64)

where differentiating (5.64) yields V(e(t),W(¢)) < —e(t)Re(t) < 0. This guarantees that the system error
state vector e(t) and the weight error W (¢) are Lyapunov stable, and hence, are bounded for all ¢ € R,
Since x(¢) is bounded for all € R, it follows from (5.63) that é(¢) is bounded, and hence, V(e(t), W (z))
is bounded for all 7 € R. It then follows from Barbalat’s lemma that lim; ., V(e(r),W(r))= 0, which
consequently shows that e(r) — 0 as t — oo. This analysis highlights that the standard model reference
adaptive control formulation overviewed in this section has the capability to suppress the effect of system
uncertainties, in the absence of actuator dynamics, to achieve desirable tracking performance specifications

captured by (5.57).
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5.2.3 Adaptive Control with Unknown Actuator Output

Building on the mathematical preliminaries overviewed in Section 5.2.2, we now present a new de-
sign procedure to ensure guaranteed stability of model reference adaptive control systems in the presence of
high-order actuator dynamics with unknown outputs. For this purpose, we consider the uncertain dynamical

system subject to actuator dynamics given by

x(t) = Ax(t)+Bv(t), x(0)=xo. (5.65)

In (5.65), v(t) € R™ is the unknown actuator output of the high-order actuator dynamics G given by

Xe(t) = Fxe(t)+Gu(t), x(0)=xc,
(5.66)

v(t) = Hxc(t),

with x.(¢) € R” being the actuator state vector, G € R”*™ being the actuator input matrix, H € R™*? being
the actuator output matrix, and F € RP*? being a Hurwitz matrix in Jordan form such that there exists

Se ]Rix” that satisfies

0 = FIS+SF+1. (5.67)

Here, without loss of much generality, we let the static gain of the actuator dynamics (5.66) be unity (i.e.,
—HF~'G =) and assume that the algebraic multiplicity of the Hurwitz matrix F is equal to its geometric
multiplicity.

Next, based on Assumption 5.2.1, (5.65) can be rewritten as

X(t) = Awx(t)+Bie(t) +Blu(t) + Wx(t) — Kac(t)|+B[v(t) —u(t)]. (5.68)

Based on the hedging approach [30, 31, 33], we now consider the (modified) reference model dynamics

X = Awx(t) +Bee(t) +B[0(1) —u(?)], x(0) =x0, (5.69)

where ¥(¢) € R™ is an estimate of the actuator output satisfying the proposed observer dynamics of this

paper given by
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£() = F)Ec(t)—kGu(t)Jr:LS1HTBTPe(t), %(0) = %o, (5.70)

P(t) = Hi(), (5.71)

with . (f) € R? being the internal observer state vector and u € R . The system error dynamics then follow
from the system dynamics given by (5.68) along with the adaptive control given by (5.59) and the reference

model given by (5.69) as
é(t) = Ace(t) —BWT(t)x(t) +Bi(t), e(0)=ep. (5.72)

where 7(t) £ v(t) — ¥(t) = H(t) € R™ with % (¢) £ xc(t) — £(t) € RP.
The following lemma is needed for the results in this section. For this purpose, let ® € R be such
that Wmax.iqt(jfl)n <wforalli=1,...,nand j=1,...,mand let k € R, be such that k < k, where k scales

the eigenvalues of G4. That is, let F’ £ kFy, H = kHy, G = G,.

lI>

Lemma 5.2.1 There exists a set k1 = {k: k <k} U {®: Wiaeir(jo1)n <@, i=1,...,n, j=1,....m}

such that if (k,®) € ki, then

R A +BWT(t) BH
AW(t),Ga) = (5.73)

A

-GWT(t) F
is quadratically stable.

Proof. We only provide a concise sketch of the proof here. In particular, the existence of k follows
from considering and analyzing the Lyapunov inequality given by AT (W (t),Ga)P +PAW(t),Ga) < 0,
P =PT > 0 (e.g., similar in spirit to the steps taken in the proof of Lemma 3.1 of [95]). In addition,
the existence of @ follows from the fact that (5.73) is Hurwitz when @ = 0 (owing to its upper triangular
structure in this case with Hurwitz matrices A, and F' on the diagonals), and hence, there must exist @ owing
to the continuity on the variations in 0 < Wmax,i_;'_( i~ S @. |

The next theorem now presents the main result of this paper.

Theorem 5.2.1 Consider the uncertain dynamical system given by (5.65) subject to Assumption 5.2.1, the

reference model given by (5.69), the actuator dynamics given by (5.66), the adaptive feedback control law
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given by (5.59) along with the update law (5.60), and the observer dynamics given by (5.70). If (k,®) € ki,

then the solution (e(t),W (t),x:(t),%(t)) of the closed-loop dynamical system is bounded and

lime(t) = 0, (5.74)
t—roo
limi() = O. (5.75)
oo

Proof. To show Lyapunov stability and guarantee boundedness of the system error state e(z), the
weight error W (¢), and the actuator estimate error . (t), consider the Lyapunov function candidate V(e, W,
%) = eTPe+ 7y 'tr WTW + us!S%.. Note that 1(0,0,0) = 0 and V(e, W, %) > 0 for all (e, W, %)+ (0,0,0).
Differentiating V(e,W, %) yields V(e(t),W (1), %(t)) < —e™ (t)Re(t) — uxl (t)%.(1) < 0, which guarantees
the Lyapunov stability, and hence, the boundedness of the solution (e(t), W (t),%:(r)). The rest of the proof

follows by writing the reference model (5.69) and the observer dynamics (5.70) subject to (5.59) as

%(t) = Aw(t) +B[HE(t) + W (£)e(t) + W (1)xe(r)], (5.76)

. A N 1

£(t) = Fxe(t) — GWT(t)x.(t) — GWT(t)e(r) + GKae(t) + ES_IHTBTPe(t), (5.77)
and then using similar steps to the proof of Theorem 3.1 in [95], and hence, is omitted. |

We now utilize LMIs to satisfy the quadratic stability of (5.73) by following a similar procedure

documented in our recent works (e.g., see[102]). For this purpose, let Wil,..-,h € R"™ be defined as
(_l)il Amax,l (_1)i1+"Wmax,l+n (_1)i1+(m7|)"Wmax,l+(;n71)n
_ (_l)iz Amax,Z (_1)i2+"Wmax,2+n s (_1)i2+(m7|)"Wmax,2+(;n71)n
iy = , (5.78)
(_ 1 )inWmax,n (_ 1 )izn Wmax,Zn ce (_ 1 )imn Wmax,mn

where i; € {1,2}, [ € {1,...,mn}, such that Wil,-..,i represents the corners of the hypercube defining the

1

maximum variation of W (¢). Utilizing the results in [96, 97], if

A,+BW, . BH
A i = . , (5.79)
-GW, ., F
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satisfies the matrix inequality

‘A;l; ,i1P+PAi17~~7i1 <0, P= Pr> 0, (5.80)

.....

for all permutations of Wl‘l«,m,il’ then (5.73) is quadratically stable. Since it is readily shown that (5.73) is
quadratically stable for large values of k, we can cast (5.80) as a convex optimization problem and solve it
using LMIs.

Here, it is important to note that the quadratic stability condition in Lemma 5.2.1, which acts as
a sufficient condition for Theorem 5.2.1 showing the closed-loop model reference adaptive control system
stability in the presence of high-order actuator dynamics with unknown outputs, is identical to Assumption 3
in [104], which acts as a sufficient condition for the case when the high-order actuator outputs are assumed to
be known. Therefore, an important conclusion of this paper is to relax our known actuator output assumption
stated in [104] by utilizing the observer dynamics (5.70) and (5.71) to estimate the unknown actuator output.
In particular, the LMI analysis highlighted above will result in the same feasible region of allowable actuator
dynamics regardless of whether the actuator output is known or unknown, and hence, there is no loss in

relaxing the known actuator output assumption of [104].

5.2.4 Illustrative Numerical Example

To illustrate our contribution presented in Section 5.2.3, we consider the second-order system given

by
x(t) = x(t) + v(t), (5.81)

with zero initial conditions. Here, let x;(7) represent the angle in radians and x,(z) represent the angular
rate of change in radians per second. For the high-order actuator dynamics, we consider a single channel

second-order actuator for the control input

o? o] : (5.82)
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16 | |—LMI Limit
0O (0.55,4.46)
|| X (0.55,3.45)
+ Simulated Limit
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Figure 5.4: LMI calculated feasible region for actuator dynamics.

A reference model with zero initial conditions is selected with a natural frequency of w, = 1.0 rad/s and a

damping ratio . = 0.7, which yields

A = . B=1| |. (5.83)

Furthermore, we use a filtered tracking command c(¢), set R = I, from (5.61) for the proposed adaptive
controller design and set element-wise projection bounds such that HW(I)] 11 ’ <2.1and HW(I)]21| <2.5.
Using the bounds on W (¢) in the LMI analysis highlighted in Section 5.2.3, the feasible region of
allowable actuator dynamics is calculated as depicted in Figure 5.4. Note that Figure 5.4 provides both the
LMI calculated feasible limit as well as the feasible limit provided by the simulation results. Two points are
selected to show the proposed controller performance in Figures 5.5 and 5.6. It can be seen in Figure 5.5
when the actuator dynamics are at the minimum point (£, @,) = (0.55,4.46), which is located on the feasible
boundary, the system performances remain bounded as guaranteed by the presented theory. In Figure 5.6,
we let the actuator dynamics be outside the calculated feasible region to show that the closed-loop system
remains bounded until the actuator dynamics reach a value of ({, @,) = (0.55,3.45). This is consistent
with the presented theory, as we provide an upper bound on the allowable actuator dynamics such that the

closed-loop system remains bounded.
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5.2.5 Conclusion

The purpose of this paper was to extend the recent work by the authors to the general case, where
there exist high-order actuator dynamics with unknown outputs in the closed-loop model reference adaptive
control systems. For this purpose, an observer architecture was proposed to provide an estimate of the
unknown output of the actuator dynamics which was then used in the design of the linear matrix inequalities-
based hedging framework. As a result, we were able to relax our previous known actuator output assumption
while retaining the same stability condition. This in turn provides the same feasible region of allowable

actuator dynamics regardless of whether the actuator output is known or unknown.

5.3 Model Reference Adaptive Control in the Presence of Actuator Dynamics with Applications to
the Input Time-Delay Problem?

For computing stability limits of model reference adaptive controllers in the presence of actuator
dynamics, a linear matrix inequalities-based hedging approach was recently proposed by the authors. In this
paper, this approach is generalized to a general class of high-order linear time-invariant actuator dynamics
with throughput term and stability of the closed-loop dynamical system is shown. As a byproduct, the
proposed generalization allows the presented linear matrix inequalities-based hedging approach to be ap-
plied to the input time-delay problem through a finite-order Padé approximation. Two illustrative numerical

examples are included to demonstrate the efficacy of the proposed approach.

5.3.1 Introduction

Although adaptive control theory is an effective methodology to suppress the effect of a wide class of
system uncertainties, it is well known that the presence of actuator dynamics can seriously limit their stability
properties. Motivated from this fact, we proposed a linear matrix inequalities-based hedging approach in a
recent series of papers [95, 102—104] for computing stability limits of model reference adaptive controllers in
the presence of actuator dynamics. Specifically, the hedging method modifies the ideal reference dynamics
in order to allow correct adaptation that is not affected by the presence of actuator dynamics. Specifically,
the stability of the closed-loop dynamical system was shown using Lyapunov theory and linear matrix

inequalities were utilized to compute minimum allowable actuator bandwidth limits.

3This section is previously published in [114]. Permission is included in Appendix B.
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The contribution of this paper is to generalize the linear matrix inequalities-based hedging approach
to a general class of high-order linear time-invariant actuator dynamics with throughput term and show
the stability of the closed-loop dynamical system. As a byproduct, the proposed generalization allows the
approach to be applied to the input time-delay problem through a finite-order Padé approximation. Two
illustrative numerical examples are included to demonstrate the efficacy of the proposed approach.

The notation used throughout this paper is standard. Specifically, R denotes the set of real numbers,
R" denotes the set of n x 1 real column vectors, R"*" denotes the set of n x m real matrices, R (resp. R )
denotes the set of positive (resp., nonnegative) real numbers, R"*" (resp., @T") denotes the set of n X n
positive-definite (resp. nonnegative-definite) real matrices, D"*" denotes the set of n X n real matrices with

diagonal scalar entries, (-)T denotes the transpose operator, (-)~! denotes the inverse operator, tr(-) denotes

the trace operator, denotes the Euclidian norm,

| ‘2 H ‘F denotes the Frobenius matrix norm, [A];; denotes
the ij-th entry of the real matrix A € R, Ain(A) (resp., Amax(A)) denotes the minimum (resp., maximum)

eigenvalue of the real matrix A € R, and “£” denotes the equality by definition.

5.3.2 Mathematical Preliminaries

We now introduce the necessary mathematical preliminaries that are needed to develop the main

results of this paper, beginning with the following definition.

Definition 5.3.1 For a convex hypercube in R" defined by Q = {6 eR": (Oimin <6, <O0™)i—is.. ’n} where
(elmi",el.ma") represent the minimum and maximum bounds for the i™ component of the n-dimensional
parameter vector 0. Additionally, for a sufficiently small positive constant €, a second hypercube is defined
by Q¢ = {6 e R": (Oimin +e<6, <0 — 8),-:1727...’,,} where Q¢ C Q. Then, the projection operator

Proj : R" x R" — R" is defined compenent-wise by

(9"{““70") yi, if6; >0 —¢gandy; >0

€

Proj(6,y) £ (ei_eimin) vi, if6:; <0 +eandy; <0 (5.84)

€

Vi, otherwise

wherey € R" [6].

111

www.manaraa.com



It follows from Definition 5.3.1 that
(0 —6*)T(Proj(6,y) —y) <0, 6*€Q,, (5.85)

holds [6, 82].

Note here that we use a generalization of this definition to matrices as
Proj,(©,Y) = (Proj(col; (®),col; (Y)), . . ., Proj(col,,(®),col,(Y))), (5.86)

where @ € R Y € R™", and col,(-) denotes the i-th column operator. In this case, for a given ©*, it

follows from (5.85) that

tr [(@—@*)T(Projm(&Y)—Y)] - Z[coli(®—®*)T(Proj(col,~(®),coli(Y))—coli(Y)) <0, (5.87)

I
—

holds.
We now briefly overview the standard model reference control problem [5—7]. Specifically, consider

the uncertain dynamical system given by

x(t) = Ax(t)+Bu(r), x(0)=xo, (5.88)

where x(t) € R” is the state vector available for feedback, u(¢) € R™ is the control input restricted to the
class of admissible controls consisting of measurable functions, A € R"*" is an unknown system matrix,
B € R™™ is a known input matrix, and the pair (A, B) is controllable.

Next, consider the reference model capturing a desired, ideal closed-loop dynamical system perfor-

mance given by

X(t) = Ax(t)+Bic(t), x:(0) = x0, (5.89)

where x,(1) € R" is the reference state vector, ¢(t) € R” is a given uniformly continuous bounded command,

A; € R™" is the Hurwitz reference model matrix, and B; € R"*" is the command input matrix. The objective
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of the model reference adaptive control problem is to construct an adaptive feedback control law u(z) such
that the state vector x(¢) asymptotically follows the reference state vector x; ().
It can be assumed, as is standard [5-7], that there exists an unknown matrix K; € R™*" and a known

matrix K, € R™*" such that A, 2 A — BK; and B; £ BK, hold. It follows that (5.88) can be written as
x(1t) = Awx(r)+Brc(t) +Blu(r) + Wix(r) — Kac(1)], (5.90)
where W; £ K[ € R™™ is unknown. Now, let the adaptive feedback control law be given by
u(t) = —Wl(0)x(t) +Kac(t), (5.91)
where W (1) € R is the estimate of W; satisfying the weight update law

Wi(t) = wProj, [Wi(t), x(t)e" (1)PB], Wi(0) =W, (5.92)

with 71 € R, being the learning rate, e(t) £ x(¢) — x,(¢) being the system error state vector, and P € R""

being the solution of the Lyapunov equation given by
0=A'P+PA, +R, (5.93)

R € R*". Note that since A, is Hurwitz, it follows from the converse Lyapunov theory [80] that there exists

a unique P satisfying (5.93) for a given R. In addition, the projection bounds are defined such that

‘ [Wl (t)]ijl < Wl,max,#(jfl)nv (5.94)

fori=1,...,nand j=1,...,m, where VAVLmaX’H( € R, denotes element-wise projection bounds.

j=Un

Now, using (5.91) in (5.90) along with (5.89), the system error dynamics can be written as
(1) = Are(t)—BW/ (1)x(1), e(0)=eo, (5.95)

where W] (t) £ W] (l‘) —W € R>m,
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The weight update law given by (5.92) can be derived using Lyapunov analysis by considering the

Lyapunov function candidate given by (see, for example, [5-7])

Vie,W)) = e Pety ltr WIW,. (5.96)

Note that V(0,0) = 0 and V(e,W;) > 0 for all (e,W;) # (0,0). Now, differentiating (5.96) yields V(e(t),
Wi(t)) < —eT(t)Re(t) < 0, which guarantees that the system error state vector e(t) and the weight error
Wi (t) are Lyapunov stable, and hence, are bounded for all # € R Since x(¢) is bounded for all # € R, it
follows from (5.95) that ¢(¢) is bounded, and hence, V(e(t),W; (t)) is bounded for all t € R ;.. It then follows
from Barbalat’s lemma that lim;_,.. V(e(), W, (£)) = 0, which consequently shows that e(r) — 0 as t — oo.
Note that this highlights that the adaptive control formulation overviewed in this section has the
capability to suppress the effect of system uncertainties to achieve desirable tracking performance specifica-
tions. Yet, it does not provide any guarantees in the presence actuator dynamics that appear in any practical

application of adaptive controllers.

5.3.3 Adaptive Control in the Presence of High-Order Linear Time-Invariant Actuator Dynamics

with Throughput Term

For the model reference adaptive control design in the presence of high-order linear time-invariant
actuator dynamics with throughput term, we now generalize the linear matrix inequalities-based hedging

approach of [95, 102-104]. Specifically, consider the uncertain dynamical system given by

x(t) = Ax(t)+Bv(t), x(0)=xo, (5.97)

where v(7) € R™ is the actuator output of the actuator dynamics Ga given by

Xe(t) = Fxc(t)+Gu(t), xc(0)=xc,
(5.98)

v(t) = Hxc(t)+Ju(t),

with x.(¢) € R! being the actuator state vector, G € R'*™ being the actuator input matrix, H € R"*/ being

the actuator output matrix, F € R'*! being a Hurwitz matrix, and J € R"*" being the throughput matrix.
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By adding and subtracting Bu(t), (5.97) can be rewritten as
x(t) = Awx(t)+Bee(t) +B[u(t) + W (t)x(t) — Kac(t) | +B[v(t) —u(t)]. (5.99)

Now, based on the novel hedging approach originally proposed in [30, 31, 33], we consider the modified

reference model dynamics given by
X =Apxe (1) + Bre(t) + B[v(t) —u(t)], x:(0) =x, (5.100)

such that with the adaptive feedback control law given by (5.91) and (5.92), the system error dynamics

follows from (5.99) and (5.100) as
é(t) = Are(t)—BW()x(r), e(0)=ep. (5.101)

Note that (5.101) is identical to the system error dynamics given by (5.95) due to the fact that the hedging
signal B[v(t)—u(t)] is introduced to the ideal reference model dynamics. The next theorem establishes the
stability of the closed-loop dynamical system as well as the boundedness of the modified reference model

dynamics predicated on linear matrix inequalities.

Theorem 5.3.1 Consider the uncertain dynamical system given by (5.97), the reference model given by
(5.100), the actuator dynamics given by (5.98), and the adaptive feedback control law given by (5.91) along
with the update law (5.92). In addition, let

A +BWE(t) —BIW(t) BH

AW (1),Ga) = : (5.102)
—GW/ (1) F

be quadratically stable. Then, the solution (e(t),W)(t),x:(t),v(t)) of the closed-loop dynamical system is

bounded and lim; . e(t) = 0.

Proof. To show Lyapunov stability and guarantee boundedness of the system error state e(r) and the
weight error W (t), consider the Lyapunov function candidate given by (5.96). Differentiating (5.96) yields
V(e(t),Wi (1)) < —e"(t)Re(r) < 0, which guarantees the Lyapunov stability, and hence, the boundedness of

the solution (e(t), Wy (1)).

115

www.manaraa.com



To show the boundedness of x;(¢) and x(¢) (and hence, v(¢)), consider the reference model (5.100)

and the actuator dynamics (5.98) subject to (5.91) as

%(t) = Awxe(t)+Bec(t) + B [Hxc(t) + (I —J) (W (t)x(t) — Kac(t))]
= (A+BI—I)W (1)) x:(t) + BHxc(t) +B(I - J) W] (t)e(t) + BJK>c(t),  (5.103)

%o(t) = Fxe(t) — GW] (0)x.(t) — GW (t)e(t) + GKac(2), (5.104)

where (5.103) and (5.104) can be rewritten in compact form as

E(t) = AWi(1),Ga)E(t) + (), (5.105)

B(I—J)W{ (t)e(t) + BJKyc(t)
o() = . (5.106)
—~GW{ (t)e(t) + GKac(t)

Note that @(-) in (5.105) is a bounded perturbation as a result of Lyapunov stability of the pair (e(t), W, (t)).
Now, it follows that since @(-) is bounded and A(W;(¢),Ga) is quadratically stable, then x,(¢) and x.(¢) are

also bounded [88]. This further implies that the actuator output v(¢) is bounded.
To show lim,_,. e(z) = 0, note that x(7) is bounded as a consequence of the boundedness of e(r)
and x,(¢). It now follows from (5.101) that é(¢) is bounded, and hence, V(e(¢), W (t)) is bounded. As a
consequence of the boundedness of V(e(t),W;(¢)) and Barbalat’s lemma [88], lim; ., V(e(), W (¢))= 0,
and hence, lim, ;.. e(r) = 0. [

We now utilize linear matrix inequalities to satisfy the quadratic stability of (5.102) by following a

similar procedure documented in our recent works [95, 102-104]. For this purpose, let Wlil _____ , € R be
defined as
(_l)ilWI,maX,l (_1)i1+"Wl,max,l+n (_1)il+(m71)nWl,maXJ—O—(m—l)n
_ (_l)iQWI,maX,Z (_ 1)i2+"Wl,maX,2+n s (_1)i2+(m71)nW1,maX72+(ln—l)n
Wi, .= , (5.107)
(_l)inWI,max,n (_1)i2'1W1,max,2n cee (_1)imnW1,max,mn
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where i; € {1,2}, 1 € {1,...,2™}, such that Wli, , represents the corners of the hypercube defining the

maximum variation of W; (¢). Utilizing the results in [96, 97], if

A,+BW, —BJW, . BH
Aiy iy = o b : (5.108)
—GWlT,_1 _____ . F
satisfies the matrix inequality
Al P+PA;., <0, P=P'>0, (5.109)
for all permutations of Wlil:---‘il’ then (5.102) is quadratically stable. We can then cast (5.109) as a convex

optimization problem and solve it effectively using linear matrix inequalities.

5.3.4 Illustrative Numerical Examples

In order to illustrate the proposed linear matrix inequalities-based hedging approach to adaptive
control, we consider an application to the input time-delay problem, where for the following dynamical

system given by

(1) = Ax(t)+Bu(t—1), x(0)=x, (5.110)

is considered. Note that (5.110) can be approximated in the from given by (5.97) and (5.98) using the Padé
approximation for u(¢ — 7) term. To this end, consider the following examples.

For the first example, we consider the scalar example presented in [115] given by

p(t) = Lpp(t)+Ls,ba(t), (5.111)

which represents the roll dynamics with p(¢) being the roll rate in radians per second, J,(¢) being the total
differential aileron-spoiler deflection in radians, L, being an unknown roll damping derivative, and L;, being
a known dimensional rolling moment derivative.

Asin [115], we set L, = —0.8(s™!) and Ls, = 1.6(s~!) and let the reference model be

pe(t) = =2pc(t) +2pemalt). (5.112)
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In addition, the projection bounds are chosen as in [115] such that ‘Wl (t)‘ < 2.7. In the context of standard
model reference adaptive control design, the maximum allowable time-delay is calculated to be 7% =
0.024(s) in [115], where the actual time-delay is determined numerically to be around 0.38(s) [116]. Using
the proposed linear matrix inequalities-based hedging approach of Section 5.3.3, the linear matrix inequality
calculations are carried out up to the fifth order Padé approximation as shown in Figure 5.7. It can be seen
from the figure that our results are much less conservative. As the order of the Padé is increased, our

time-delay margin converges to t* = 0.269(s).

0.4
0.35[ 1
0.3r X i
X X X X
0.25F A
& 02F A
0.15F i
0.1F X Proposed 4
—Results in [115]
0.05F — Actual 1
0 1 1 1 1 1
0 1 2 3 4 5

Pade Order

Figure 5.7: Comparison of the maximum allowable input time-delay between proposed approach of this
paper and the results in [115].

For the second example, we now consider a second order dynamical system given by

x(t) = x(t) + u(t—1), x(0)=xo. (5.113)

We select a reference model with a natural frequency of @, = 1.0 rad/s and a damping ratio { = 0.7 such

that

0 1 0
A = , Br= , (5.114)
-1 —-14 1
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hold. Using the rectangular projection operator, the bounds on the uncertainty are set element-wise such that

|[Wi(1)]1,1| <2.1and |[W;(t)]2,1| < 2.5. Then using the proposed linear matrix inequalities-based hedging

approach, the linear matrix inequality calculations are carried out up to the fifth order Padé approximation as

shown in Figure 5.8. It can be seen from the figure that as the order of the Padé is increased, our time-delay

margin converges to T° = 0.3(s).

0.4
035
0.3
025

T
o
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T

0.15f
0.1

0.05

X
X

X Proposed

— Simulated Limit

0 | |
0 1 2

3
Pade Order

4

5

Figure 5.8: Linear matrix inequality calculated maximum allowable input time-delay.

Figures 5.9 and 5.10 show the the proposed controller performance with input time-delay. Since it is

calculated that the allowable maximum time-delay margin is 7* = 0.3(s), it is theoretically expected that the

system performances are guaranteed to be bounded for time-delay values less than or equal to the calculated

maximum. Figures 5.9 and 5.10 illustrate this statement, in which Figure 5.9 shows the system performance

is bounded for the linear matrix inequality calculated maximum time-delay margin of 7% = 0.3(s), and

remains bounded until a time-delay value of 7% = 0.4(s) is applied in Figure 5.10.

119

www.manaraa.com



—

Tl (t), T (t)

u(t) u(t)

Tr1 (t), T (t)

u(t) wu,(t)

—u(t)

20

40

t [s]

60

80 100

T2 (t) , X2 (t)

Wi(t)

Figure 5.9: Proposed controller performance with

2

80 100

-

|

lllll

(t)
ur(t)
80 100

120

T2 (t), xZ9 (t)

W, (t)

-2 ‘
0 20 40 60 80 100
t [s]
¢
1)
H
0 3
T Vi/h,l ()
2T le,l (t)

input time-delay (t* = 0.3(s), v = 10).

2 IBIBIBIBIRIRIRIRI]
=== Tya(t)
1r _er(t)
} ----- s (t)
O F BHHEHHM HH LRI L T AR TH A
-1+
-2
0 20 40 60 80 100
¢ [s]
T oyepepnperer;
2 ke raoass
i
L
]
0.:'-
N 1/}/11’1 ()
2T Wlm (t)
0 20 40 60 80 100
t[s]

www.manharaa.com



5.3.5 Conclusion

We generalized the linear matrix inequalities-based hedging approach of [95, 102-104] to a general
class of high-order linear time-invariant actuator dynamics with throughput term and showed the stability
of the closed-loop dynamical system. Through a finite-order Padé approximation, the proposed generalized
allowed the presented approach to be applied to the input time-delay problem. The efficacy of the proposed

approach was demonstrated through two different illustrative numerical examples.

5.4 Computing the Stability Limits of Pole-Zero Actuator Dynamics on Adaptive Control Laws for
Aerospace Applications*

This paper illustrates an application of a linear matrix inequality-based hedging approach for model
reference adaptive control in the presence of pole-zero actuator dynamics. Specifically, this approach uses a
hedging signal to alter a given reference model trajectory such that adaptation is not effected by the presence
of actuator dynamics, then it uses linear matrix inequalities (LMIs) to compute the stability limits of the
adaptive control law as a result of the hedged reference model. In order to demonstrate the capability of the
proposed approach in providing safe and predictable limits, multiple cases of pole-zero actuator dynamics
are considered on the short-period dynamics of a hypersonic vehicle model, where a feasible region of safe

actuation is computed for each pole-zero configuration.

54.1 Introduction

Stability limits of adaptive controllers in the presence of actuator dynamics is a well-known prob-
lem. In recent papers by the authors [95, 101-105, 114, 118], a new approach has been proposed using
a hedged reference model and linear matrix inequalities (LMIs) to compute stability limits of adaptive
controllers. In particular, we have considered a wide range of generalizations of the proposed framework,
including the cases known and unknown control input, known and unknown actuator output, linear and
nonlinear uncertainties, and first-order and high-order actuator dynamics. In our most recent work [118], an
application to a hypersonic vehicle model is also included for first-order actuator models.

While it is possible to represent actuator models as first order dynamics using different assumptions
and a reduction of order, more accurate actuator models for aerospace applications are better represented by

higher order dynamics, often with a zero and multiple (usually two or three) poles. The differences between

4This section is previously published in [117]. The copyright is owned by the author (see Appendix B).
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these models can drastically effect the closed-loop stability. Motivated from this standpoint, the purpose
of this paper is to demonstrate the capability of the proposed LMI-based hedging approach to provide safe
and predictable limits for a few relevant actuator models with a zero and multiple poles, as well as different
control effectiveness by means of the static gain of the actuator model. Specifically, we consider multiple
cases of pole-zero actuator dynamics for the short-period dynamics of a hypersonic vehicle model, where a
feasible region of safe actuation is computed for each pole-zero configuration.

The notation used in this paper is fairly standard and similar to, for example, [95]. For self-
containedness, note that R denotes the set of real numbers, R” denotes the set of n x 1 real column vectors,
R™™ denotes the set of n x m real matrices, R (respectiely, R, ) denotes the set of positive (respectively,
nonnegative) real numbers, R’}" (respectively, @T”) denotes the set of n x n positive-definite (respectively,
nonnegative-definite) real matrices, and “£” denotes equality by definition. In addition, we write (-)T for

the transpose operator and (-)~! for the inverse operator.

5.4.2 The LMI-Based Hedging Approach for Adaptive Control: A Concise Overview

5.4.2.1 Uncertain Dynamical System with Actuator Dynamics

We now present a concise overview of the LMI-based hedging approach in the presence of actuator
dynamics, where we refer to [95, 101-105, 114, 118] for details. Specifically, here we consider the uncertain

dynamical system given by
() = Apxp(t) + By V(1) + Wi ()], %5(0) = xp0, (5.115)

where xp(¢) € R is a measurable state, A, € R"*"» and B, € R™*" are known system matrices (with the
pair (Ap,Bp) assumed to be controllable), W € R"*™ is an unknown weight matrix, and v(t) € R™ is an

actuator output of the actuator dynamics Ga given by

Xa(t) = Fxu(t)+Gu(t), xa(0)=xy, (5.116)

v(t) = Hxu(1), (5.117)

with x,(¢) € R” being the actuator state vector, G € R”*™ being the actuator input matrix, H € R™*? being

the actuator output matrix, and ' € RP* being a Hurwitz matrix such that there exists S € R, ” that satisfies

0 = FIS+SF+1. (5.118)
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5.4.2.2 Adaptive Control for Command Following

To address command following, let ¢(z) € R be a given piecewise continuous reference command

and x.(¢) € R™ be the integrator state satisfying

ie(t) = Epxp(t)—c(t),  xe(0) = Xeo. (5.119)

Here, E, € R"*" allows the selection of a subset of xp(¢) to follow c(¢). Considering (5.115) and (5.119),

the augmented dynamics can be written as

Ay Op s, B Ony <
) = |7 T x4+ | T | pO+WTO]+ ]| T | e), x(0)=x0, (5.120)
EP Onc XN Onc xXm *Inc XN
A B B,

where x(t) £ [x} (1), x (1)]" € R", A € R™", B € R™"™, B, € R"", and n = nj+ nc. It follows by adding

and subtracting Bu(r) that (5.120) can be written as
x(t) = Ax(t)+Bc(t) +Blu(t)+Wrxy(t)|+B[v(t) —u(t)]. (5.121)

Next, let the feedback control law be given by

ut) = —Kx(t) =W (t)x,(t), (5.122)

where K € R™*" is the nominal feedback gain designed such that A, £ A — BK € R"*" is Hurwitz and

W (t) € R"™*" is an estimate of W satisfying the weight update law
W(t) = vyProj, [W(t), x,(t)e" (1)PB], W(0) = W, (5.123)

with ¥ € R, being the learning rate, e(t) 2 x(¢) — x(t) being the system error state vector (x(¢) is the
state vector of the reference model which will be provided shortly), and P € R’} being the solution of the

Lyapunov equation given by
0=A;P+PA +R, R e R, (5.124)
In (5.123), the projection operator is used, and hence, we need its definition [6].
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Definition 5.4.1 LetQ = {6 ceR": (Gimi“ < 6; < M) ,‘:1727__,’,1} be a convex hypercube in R", where (Gimi“,
0/"**) represent the minimum and maximum bounds for the i™ component of the n-dimensional parameter
vector 0. In addition, let Qg = {9 ceR": (Oimin +e<6;, <M — 8),:1727“,7,,} be a second hypercube for a
sufficiently small positive constant €, where Q¢ C Q. Withy € R", the projection operator Proj : R" x R" —

R" is then defined compenent-wise by

(95““*9") vi, if6;>0"—¢eandy; >0,

€

€

Proj(6,y) £ § (2=2%) v, if 6 < oM +-€ and y; <0, (5.125)

Vi, otherwise.

In the light of Definition 5.4.1, it follows that Proj (6 — 6*)" (Proj(6,y) —y) < 0 (see [6, 82] for
details). Note that this definition can also be generalized to matrices as Proj, (0,Y) = (Proj(col; (®),
col(Y)),...,Proj(col,(®),col,(Y))), where ® € R™™, Y € R™™, and col;(-) denotes ith column oper-
ator. In particular, for a given matrix ©*, it follows from Proj (6 — 6*)T (Proj(6,y) —y) < 0 that (-
©*)T(Proj,,(©,Y) — Y)|= L1, [col;(® — ©*)T(Proj(col;(®),col;(Y)) — col;(Y))] < 0. Now, with regard

to (5.123), the projection bounds are defined such that |[W(2)]ij| < Winaxis( , fori=1,...n, and

Jj—Dn

j=1,...,m, where Wmaxﬁ( j—Un, € R, denotes symmetric element-wise projection bounds.

Now, using (5.122) in (5.121), we can write
x(t) = Awx(t)+Bec(t) — BW (t)xp(t) + B[v(t) —u(t)], (5.126)

where W (¢) £ W (1) — W € R"™>™ is the weight estimation error. Motivated by the structure of (5.126), we

use the hedging approach [30, 31, 33] to design the modified reference model as
X = Aw(t) +Bec(t) +B[v(t) —u(r)], x:(0) =x0, (5.127)

where x,(t) € R" is the reference state vector and A, € R"*" is the reference model matrix, such that the

system error dynamics follow from (5.126) and (5.127) as

é(t) = Ae(t) —BWI(t)x,(t), e(0) = eo. (5.128)
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The following theorem (see the aforementioned papers above for proof details) presents the stability
of the proposed adaptive control architecture in the presence of actuator dynamics. For this purpose, we note

that N = [I xn,,Onyxn,] € R™*.

Theorem 5.4.1 Consider the uncertain dynamical system given by (5.115), the integrator dynamics given
by (5.119), the actuator dynamics given by (5.116) and (5.117), the reference model given by (5.127), the

feedback control law given by (5.122), and the update law given by (5.123). In addition, let

X A+BWT(t)N  BH
AW(t),Gs) = (5.129)
~G(K+WT(t)N) F

be quadratically stable for all W(z‘) satisfying the projection based weight update law given by (5.123), then

the solution (e(t),W (1)) of the closed-loop dynamical system is bounded and 1im; . e(r) = 0.

5.4.2.3 Utilizing LMISs for Safe Adaptive Control

To satisfy the quadratic stability [97] condition in Theorem 5.4.1, we use LMIs for given projection

bounds W,,.x on the elements of W(t). To elucidate this important point, let W,-] i € R"™*" be defined as

(_l)il Amax,l <_])il+anmax,l+np cee (_1)iH(m*])npWmax,lJr(mfl)np
o (—1)2W 2 _1)i2+an 2 (=1 W 2 lmel
Wih,.,,il _ ) max ( max,2+4-np ( ) max,2+4(m—1)n, : (5.130)
_( - l)inp Wmax,np (_ 1)i2"p Wmax72np oo (_ l)imnp Wmax,mnp ]

where i; € {1,2}, 1 € {1,...,2™"}, such that W,-h_“,,-l represents the corners of the hypercube defining the

maximum variation of W (¢), and let

A = , (5.131)

-----

be the corners of the hypercube constructed from all the permutations of Wil,..‘,i For given actuator

g

dynamics Ga, it can then be shown that

Al iP+PA, i, < 0, P>0, (5.132)
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implies that AT (W (1),Ga) P +PA(W(1),Ga) < 0[96, 99]. As a consequence, one can solve the LMI given
by (5.132) for all permutations of W;, _; to conclude the quadratic stability condition holds. Furthermore,
(5.132) can be cast as a convex optimization problem to determine the feasible region for the actuator
dynamics given the projection bounds W, on the elements of W(¢) which are designed based on the
allowable system uncertainties.

This is important because we want to obtain a computable limit such that any actuator with dynam-
ical characteristics captured within the computed feasible region is guaranteed to allow for safe adaptive
control of the uncertain dynamical system. To do this, we need a way to start from an initial feasible point
and then search in all directions of the dynamical parameters, for the feasible limit. By doing so, the entire
region found through the search is guaranteed to be feasible. Besides starting from an initial feasible point,
the other requirement for the search is that the parameters of the actuator dynamics are affinely parameterized
such that satisfying (5.132) still implies AT (W (r),Ga)P +PA(W(r),Ga) < 0 [96, 99].

With this in mind, we next show how we can affinely parameterize the actuator dynamics to fit the
form of (5.132), and then search for the limit of all feasible parameter combinations thereby creating our

feasible region. For this purpose, consider the actuator model given as

-1 -2
ap—18"" +ap, 28"+ +ais+ag
= 5.133
Ga(s) sP+byp_1sP~ - +bis+by ( )

which can be written in controllable canonical form as (5.116) and (5.117) with the matrices

(0 1 0 0 | 0]
0 0 1 0 0
F=1: : o : , G= ||, H=|ay a1 ay ... ap |- (5134
o 0 0 .. 1 0
|—by —by —by ... —b, 1]

Note here that we use the controllable canonical form of Ga(s) to keep the term —G(K —i—W,-TIM,-IN) in
(5.131) affine. Now, since we are interested in determining how the parameters a; and by, k =0,1,...,p—1
of the actuator matrices, can be varied from initial feasible values such that (5.132) still holds, we let a; £
aieas —8a; and by & bf"“s — &by, where aieas and bieas indicate the initial feasible values (i.e., the actuator

is sufficiently “fast” for these values) and day and 8by are the variation in the paramaters such that we can
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incrementally decrease from the feasible starting point. It then follows that the matrices F and H in (5.134)

can be written as

[0 1 0 0 |
0 0 1 0 0 0
—1)x1 —1)x(p—1
Fo_ : : : : " Sho (p—1)x (p—1)x(p—1)
| o
0 0 0o ... 1 e—)
_ bfeas _ bfeas _ bfeas _ bfeas Fo
L 0 1 2 pfl_
Ffeas
Op—1x2 | Op—2)x(p—2 0p—1 1) | Op-1)x1
by (p—1)x (P—2)x(p—2) 4 Sy (p—D)x(p—1) | ¥(p—1)x (5.135)
0 1 ‘ O1x(p-2) Ot (p-1) ‘ 1
;{ Fp—l
H = [ageas A a;easl} +3ag [_1 0 ... o}
Hfeas Hy
+8a [0 -1 ... o}+---+8ap_1 [0 0 ... —1]. (5.136)
H Hy
Using (5.135) and (5.136) we can reconstruct (5.131) as
A+BW, N  BH™| =1 |Oun BHi| »=1  |Ops Opx
Aipip = +) ba +) b .(5.137)

Now using the parameterized form given by (5.137), we start the search from initial feasible values aie‘“

and bieas, k=0,1,...,p—1, with da; =0 and 6b, =0,k =0,1,...,p— 1, such that all initial corners of the
hypercube constructed from all the permutations of W;, _;, (i.e Alff”af”il) satisfy (5.132). Then the search is
conducted to find the largest variations in day and 6by, k = 0,1,..., p — 1 such that (5.132) is still satisfied.
To further elucidate the proposed approach, Algorithm Feasible Region Search describes this process to
compute this feasible region of a; and b; parameters of the actuator dynamics, where the optimization is

carried out using YALMIP [119], but other solvers can also be used [120].
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Algorithm 1 Feasible Region Search
Data: A,B,K,N’Wmax7i+(j_1)np,a]f(eas7b£eas’ ol

Result: ai, by
for 6ap=0: & : ageas do

for a; =0: & : ai** do

c e
for 6a, | =0:¢q: apefsl do

for by = 0: &g : b do

for 61 =0: ¢y : b{eas do

for 6b,_1 =0: & : bﬁfisl do

it AT . P+PA; i <0and P >0 then
| Continue

else
| Break

end
end
a; = a,ff‘as —8ay, k=0,1,...p—1

bk=b£eas—5bk,k=0,1,...,p—1

Save (ao,al, ...,ap_l,b(),bl, ---,bp—l)

end

end

end

end

end

Now, using the above LMI analysis and search algorithm, we are able to compute feasible regions
for the actuator dynamics such that safe adaptation is guaranteed. In the next section, we use this method

to compute the limits for higher order actuator models for the control of the short-period dynamics of a

hypersonic vehicle model.
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5.4.3 Evaluation of LMI-Based Hedging Approach for Adaptive Control of a Hypersonic Vehicle
Model with Pole-Zero Actuator Dynamics
To elucidate our proposed approach to the actuator dynamics problem, we provide the following
application to a hypersonic vehicle. Consider the uncertain hypersonic vehicle short-period dynamics given

by

—2.39x 107! 1 —1.33x107*
N(t) = xp(t) + (v(t) +WTxy (1)), (5.138)
4.26 —1.19x 107! —1.84x 107!

with zero initial conditions and the state vector being defined as x, () = [0(t), ()], where a(t) denotes the
angle-of-attack and ¢(t) denotes the pitch rate. The uncertainty is considered to be W = [~100 .01]T such
that it dominantly and excessively effects the stability derivative C,,,,. Specifically, the value —100 creates a
400% increase in C,y,,,, destabilizing the nominal closed-loop system, whereas the second value 0.01 can be
considered to be small since it will not effect the closed-loop performance of the hypersonic vehicle which
is lightly damped. In addition, v(¢) is the actuator output of the actuator dynamics which we represent in the

frequency domain as
V(s) = Ga(s)Ae(s), (5.139)

where A.(s) denotes the elevator deflection command. Linear quadratic regulator (LQR) theory [91] is used
to design the nominal controller for the proposed control design, with E, = [1, 0] such that a desired angle-
of-attack command is followed. The controller gain matrix K is obtained using the highlighted augmented
formulation, along with the weighting matrices Q = diag[2000, 25, 400000] to penalize the states and
R =12.5 to penalize the control input, resulting in the gain matrix K = | —-1359 —37.7 —178.9|, which
has a desirable 60.4° phase margin and a crossover frequency of 6.75 Hz. In addition, we set the element-
wise projection bounds as |[W(r)];,1| < 105 and |[W(¢)]2,1]| < 0.1, such that we obtain the permutations

defining the maximum variation of W (¢) as
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Using all the permutations of W, i = 1,...,4 the corners of the hypercube are then constructed as

A+BW/N  BH
A = , i=1,...,4 (5.140)

~G(K+W;N) F
The purpose of the rest of this section is to analyze the effect of different actuator dynamics on
the allowable feasible region for safe adaptive control. In light of this, the information above is all that
is necessary to conduct the LMI analysis highlighted in Section 5.4.2.3 such that the feasible region can
be computed using Algorithm 1 Feasible Region Search. Even though time response simulations of the
controller performance are not included in this analysis, it should be noted that the selected feedback gain
matrix K is tuned for desirable nominal control performance and the uncertainty given by W deteriorates
the nominal controller performance such that the proposed adaptive controller is necessary for extracting a
desirable performance from the uncertain dynamical system. For additional details including time response
simulations of the performance of the proposed control design, the reader is directed to [118]. To thoroughly
analyze the effect on the feasible region by higher order actuator dynamics, we divide this section into three
subsections in which we first consider a second order actuator model, then add a zero to this second order
model, and finally add a pole along with the zero such that the final actuator model considered is a third

order system with one zero and three poles.

5.4.3.1 Computing Limits for Second Order Actuator Dynamics

In this subsection, we begin with a second order actuator model which is then be used as a baseline
for comparison with the actuator models presented in the remaining subsections. For this purpose, consider

the actuator dynamics given in the frequency domain as

K,»>
= n 141
Ga(s) 21+ 28 @ns + @2 (5.141)

where K, is the static gain, @, is the natural frequency, and { is the damping ratio. It follows that (5.141)

can be written as in (5.116) and (5.117) with

F= CG=| |, H:[Kawg o]. (5.142)
—0? —2lo, 1
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In order to use Algorithm 1 Feasible Region Search, it is necessary for (5.142) to be affinely
parameterized. For this purpose, let ag = by = ®2 and by = 2{ @, where the static gain K, is not included
in ag to more conveniently visualize its effect. This is done by fixing K, at different values and then running
the search algorithm for the remaining parameters and plotting the resulting 2-D figure. Since ay = by, the

F and H actuator matrices in (5.142) can be written as

0 1 00 00
F = +8by +68b; , (5.143)
_ bgeas _ bgeas 1 0 0 1
— —— —_——
[Ffeas F )2
H = |K,bl 0} +8bo [—Ka o] +0b; [0 0]. (5.144)
- ——
Hfeas H, H>

Furthermore, the corners of the hypercube given by (5.140) can now be represented as

7 1 feas
A+BW'  BH Oses BH, 03,3 BH,
A = l +8by | sby| " . (5.145)

~G(K+W;N) Ffes 02x3 i O3 B>

Now, starting at the initial feasible values bgeas = 8100 and bﬁeas =270 (i.e., @, =90 and { = 1.5) we use

Algorithm 1 Feasible Region Search to obtain the feasible region of by and b1, and then map it back to

o, and ¢ (i.e., ®, = /by and { = 2\”/1%). The resulting feasible region of allowable actuator dynamics is
shown in Figure 5.11 with different fixed static gain K, values between 0.65 and 3.0. Specifically, it can
be concluded from the figure that any actuator with dynamical characteristics above all the computed limits
can be used for safe adaptive control of the considered hypersonic vehicle in the respective range of static
gain values. For example, if the actuator considered has the pair (§, @,) = (0.55,30), it can be concluded
that safe actuation is guaranteed for K, € [0.65,3.0]. Furthermore, it can be seen from the figure that when
K, <1 (K, =1 is indicated by the black dashed trace), the feasible region gets smaller due to the more
dramatic increase in necessary wy values. In addition, it is evident that the feasible regions also decreases
when K, > 1, such that K, = 1 can be concluded to be the optimum static gain value in that it provides the
largest feasible region.

It should be noted that another way to investigate this problem is by considering the uncertainty in

the static gain K, as part of an unknown control effectiveness which would then be used to build the corners
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Figure 5.11: LMI calculated feasible region for second order actuator dynamics with K, € [0.65,3.0]. The
black dashed trace indicates K, = 1.0.

of the hypercube for the LMI analysis. In this case, the architecture considered in [95, 103] which includes

an unknown control effectiveness could be used to determine the feasible region.

5.4.3.2 Computing Limits for Second Order Actuator Dynamics with One Zero

We now add a zero to the second order actuator model from Section 5.4.3.1 and assume unity static
gain
(l)g (Ms + 1)

gals) = T2l ol (5.146)

where —A, !'is the added zero. It follows that (5.146) can be written in controllable canonical form with

0 1 0
F= ., G=| |, H:[m,% Mw,%} (5.147)
—0? 20w, 1

As in Section 5.4.3.1, for visual convenience, we plot the feasible region of ({, @, ) for different fixed values

of the added zero. With this in mind, we again let by = ®> and b; = 2{ @, and write the parameterized

matrices
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0 1 0 0 00
F = +8by +8by , (5.148)
_b{)eas _bgeas 1 0 0 1
~~ -~ ~~—— ~~——
[Ffeas F 23
H = [b(ffas Alb{,eaS} +8bo [—1 _xl] +0b, [0 0]. (5.149)
eras H1 H2

such that the corners of the hypercube can be constructed as in (5.145). Starting at the initial feasible values
bge"‘s = 8100 and bgeas =270 (i.e., @, =90 and { = 1.5), Algorithm 1 Feasible Region Search is used to find
the feasible region of by and b, for three different zero values (i.e., A; = 1.0,0.5,0.1). The corresponding
feasible regions of @, and { values are shown in Figure 5.12, such that any actuator in an aircraft with
characteristics above these feasible regions is guaranteed to provide safe adaptation. It can be seen that as
the zero moves further left from the imaginary axis, the feasible region gets smaller. In addition, points are
included to show where instability is reached in simulation to estimate the conservatism of the computed

limit provide by the proposed approach.

20 _—
— =1
18| X Simulation .
—A1 =0.5
161 % Simulation a
—A1 =0.1
141 % Simulation 7
12+
$10r
8 [
6 [
4 [
2 [ -
0 | | | | | |

1
0.2 0.4 0.6 0.8 1 12 14

¢

Figure 5.12: LMI calculated feasible region for second order actuator dynamics with additional zero.
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5.4.3.3 Computing Limits for Third Order Actuator Dynamics with One Zero and Three Poles

For this example, a pole is added to the actuator model from Section 5.4.3.2 such that the resulting
actuator model is third order. For this purpose, consider the actuator dynamics given in the frequency domain

as

B 2(Ars+1)
Gals) = (Mas+ 1) (s + 2 ns + 02) (-150)

where —A, ! is the added pole. In controllable canonical form, (5.150) can be written as in (5.116) and

(5.117) with

0 1 0 0

F=1 0 0 1 . G=lol, H:h’f Mﬁ’f 0} (5.151)
o} 2 1
R e

Again for convenience in displaying the results, we fix A; and A, to obtain the feasible region of { and
oy, values. For this purpose, we use each of the three zeros considered in the previous section, with three
different poles, and then the feasible region is computed. To use Algorithm 1 Feasible Region Search let

by = a)f and b; = 2 @, such that the parameterized actuator matrices F and H follow as

0 1 0 0 00 0 0 0
F = 0 0 1 +0bp |0 0 O|+6bi |0 0 o0, (5.152)
f%zbgeas 7(bgeas+%2b1;eas) 7(b€eas+i) %2 1 0 0 %2 1
[Ffeas ;‘: 23
H = |l Zbf o] +8bo [;2 —2 o} +8b; [0 0 0} : (5.153)
Hfeas H, H>
such that the corners of the hypercube can be constructed as
—T
A+BW; BH'® 03x3 BH) O3x3 BH»
A = + 0by 0b, . (5.154)
—G(K+WI-TN) Fleas 033 Fi O3x3 B
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Starting at the initial feasible values bge“s = 8100 and bﬁeas =270 (i.e., @, =90 and { = 1.5), Algorithm 1
Feasible Region Search is used to find the feasible region of by and b; and then mapped back to ®, and { as
shown in Figures 5.13-5.15. It can be seen that the location of the third pole, effects the allowable variation
in @, and {. For instance, in Figure 5.13, when A, is large (i.e., the pole is closer to the imaginary axis),
larger { values require drastically large @, values whereas when A, gets smaller (i.e., the pole moves further
away from the imaginary axis), smaller @, values can be tolerated for the respective { values. Similar
arguments can be made from Figures 5.14 and 5.15. In addition, simulations were run to determine at what

values the system yields unbounded trajectories. These points are included to estimate the conservatism of

the proposed approach.
70 w
— X =15
X Simulation
60— Ao = 1.0 _
Simulation
— X =0.5 x
50| x Simulation 7
40 - i
=]
3
30+ -
20+ =
7 X X
% %
10 x *
| | | | | | |
0.2 0.4 0.6 0.8 1 1.2 1.4

¢

Figure 5.13: LMI calculated feasible region for third order actuator dynamics with one zero (4; = 1.0) and
three poles.

In addition, Figures 5.16-5.20 are included to show the performance of the proposed approach.
Specifically, Figure 5.16 shows the feasible region computed by Algorithm 1 Feasible Region Search for
the case with the added zero at A; = 1.0 and the third pole at A, = 0.5 from Figure 5.13. Additional data
points with different { and ®, values have been included with the LMI computed limit, with the simulation
results provided in Figures 5.17 — 5.20. In particular, Figure 5.17 shows the reference model performance
for data points 1-5 which are all contained within or on the feasible limit. This shows approximately where

the performance of the reference model deteriorates when compared to a sufficiently “fast” actuator (i.e.,
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Figure 5.14: LMI calculated feasible region for third order actuator dynamics with one zero (A; = 0.5) and

three poles.
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Figure 5.15: LMI calculated feasible region for third order actuator dynamics with one zero (A; = 0.1) and

three poles.

data point 1 representing (&, @,) = (0.53,60)). As seen in the figure, the angle-of-attack trajectory does not

change considerably between the different (£, @,) values, whereas the pitch rate has different degrees of

oscillation in the transient portion. It was found that as the value of { increased, a larger value of ®, was
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required for more desirable reference model performance. Lastly, Figures 5.18-5.20 show the state tracking
and control performance for data points 1,2, and 6 from Figure 5.16. It can be seen from Figures 5.18
and 5.19 that the state tracking and control performance deteriorate slightly between the sufficiently “fast”
actuator given by (&, @,) = (0.53,60) and the dynamics at the feasible limit given by (&, w,) = (0.53,18.7).
This is to be expected since the reference model performance is effected as actuator becomes “slower”
as seen in Figure 5.17. The point of instability is then reached at ({,m,) = (0.53,16.7) as seen by the

unbounded trajectories in Figure 5.20.

— Algorithm

* 1. (¢,wn) = (0.53,60)

0 2. (C,wy) = (0.53,18.72)
o 3. (¢,wn) = (0.3,30) M
O 4. (Cwyn) = (0.7,20)

V 5. (Cown) = (1.1,30)

¥ 6. ((,wn) =(0.53,16.7) ||
X Additional Unstable

0.2 0.4 0.6 0.8 1 12 14

Figure 5.16: LMI feasible region with additional simulation points for third order actuator model from
Figure 5.13 with A; = 1.0 and A, = 0.5.
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Figure 5.18: State tracking and controller performance for data point 1 (i.e., (§, ®,) = (0.53,60)) of Figure
5.16.
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Figure 5.19: State tracking and controller performance for data point 2 (i.e., ({, @,) = (0.53,18.7)) of Figure

5.16.
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Figure 5.20: State tracking and controller performance for data point 6 (i.e., (§, @,) = (0.53,16.7)) of Figure

5.16.
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5.4.4 Conclusion

In this paper, an LMI-based hedging approach for model reference adaptive control in the presence
of high-order actuator dynamics was applied to the short-period dynamics of a hypersonic vehicle model
subject to pole-zero actuator dynamics. It was shown that the proposed approach has the ability to provide
a feasible region of safe actuation limits for different high order actuator models with varying pole and zero

locations as well as different static gain values.

140

www.manharaa.com




CHAPTER 6: EXPANDED REFERENCE MODELS FOR UNCERTAIN DYNAMICAL SYSTEMS
WITH ACTUATOR DYNAMICS: STABILITY, PERFORMANCE, AND ROBUSTNESS

For uncertain dynamical systems with actuator dynamics, this paper presents a new adaptive control
architecture using expanded reference models. Specifically, the proposed adaptive control architecture
allows the trajectories of the uncertain dynamical system to follow the trajectories of the expanded reference
model that are shown to remain predictably close to the trajectories of the ideal reference model, which
captures a desired closed-loop system performance, as compared to a well-respected approach. In addition,
we utilize a command governor architecture with the proposed expanded reference model in order to achieve
asymptotic convergence of the expanded reference model trajectories to those of the ideal reference model
such that the desired closed-loop system performance can be captured. We then incorporate an estimation
of the actuator bandwidth for providing robustness of the proposed adaptive control architecture against
possible uncertainties in the actuator bandwidths. Finally, we analyze the stability of the proposed adaptive
control architecture and its generalizations using linear matrix inequalities and Lyapunov theory, and also

present a numerical hypersonic vehicle example for illustrating the efficacy of our contributions.

6.1 Introduction

6.1.1 Motivation and Background

The design of a model reference adaptive control algorithm has three major components — a
reference model, an update law, and a feedback control law [3, 4]. Specifically, a desired closed-loop system
performance is captured by the reference model. The system error between the state (respectively, output) of
this model and the state (respectively, output) of the uncertain dynamical system is used to drive the update
law online. This then allows the control law to adapt its feedback gains using the information received from
the update law for suppressing the system error. The promising feature of this control algorithm is its ability

to achieve desired levels of system performance without excessively relying on dynamical models of the
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system being controlled. Therefore, it can effectively guarantee certain levels of system performance in the
presence of system uncertainties (see, for example, [5-7, 93]).

While addressing system uncertainties, the presence of unmodeled dynamics are often neglected in
the design of model reference adaptive control algorithms (see, for example, [8—12] and references therein).
A practically unavoidable form of unmodeled dynamics is the actuator dynamics that is present in any
physical system. In particular, if the bandwidths of each actuator channel are not sufficiently fast, then the
closed-loop system trajectories may not behave close to the reference model trajectories and, importantly,
the stability of the closed-loop system can be lost. Furthermore, additional verification steps are necessary
to show the allowable bandwidth range of the actuator dynamics for safety-critical and human-in-the-loop
applications such that the adaptive control algorithms correctly suppress the system uncertainties [95].

The authors of [58] investigate how slow the actuator dynamics need to become before the closed-
loop stability is negatively effected for a scalar system. In addition, they then propose different modifications
to the control law to provide additional robustness when the actuator dynamics are not sufficiently fast. The
authors of [30-33] propose a well-respected practical approach in the aerospace engineering field known as
(pseudo-control) hedging. In particular, based on a given reference model capturing a desired closed-loop
dynamical system performance, the hedging approach alters the trajectories of this model enabling adaptive
control laws to be designed such that their stability is not affected by the presence of actuator dynamics.
Furthermore, the results documented in [95, 117, 118] present theoretical generalizations to this approach,
where linear matrix inequalities (LMIs) are used to show that correct adaptation in the presence of actuator
dynamics is only feasible under certain stability limits. Specifically, considering the actuator dynamics of
interest, when the solution to the resulting LMIs is feasible, then stability of the closed-loop dynamical
system is guaranteed. While the hedging approach is a well-adopted technique with applications to aircraft
[30-34, 121], spacecraft [122], helicopters [123], and missiles [124]), the stability guarantees as shown in
[95, 117, 118] are limited to achieving bounded controlled system trajectories around a neighborhood of the

given ideal reference model that captures a desired closed-loop system performance.

6.1.2 Contribution and Notation

The contributions of this paper can be stated as follows. First, we present a new adaptive control
architecture using expanded reference models for uncertain dynamical systems with actuator dynamics.

The proposed adaptive control architecture allows the trajectories of the uncertain dynamical system to
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follow the trajectories of the expanded reference model, which are shown to remain predictably close
to the trajectories of the ideal reference model as compared with the hedging approach. Second, we
utilize a new command governor architecture developed for the proposed expanded reference model for
the purpose of achieving asymptotic convergence of the expanded reference model trajectories to those of
the ideal reference model such that the desired closed-loop system performance can be captured. Third, we
incorporate an estimation of the actuator bandwidth for providing robustness against possible uncertainties
in the bandwidths of actuator channels. Finally, we analyze the stability of the proposed adaptive control
architecture and its generalizations using linear matrix inequalities and Lyapunov theory, and also present a
numerical hypersonic vehicle example for illustrating the efficacy of our contributions.

It should also be noted that two preliminary conference versions of this paper appeared in [125,
126]. The present paper significantly goes beyond these preliminary conference papers in the sense that
i) neither [125] nor [126] consider uncertainty in the control effectiveness and the present work does, ii) a
command governor architecture is implemented in the present paper such that asymptotic convergence to
the ideal reference model is guaranteed and neither [125] nor [126] can achieve this, and iii) this present
work considers uncertainty in the actuator bandwidth for a multi-input case whereas [126] only considered a
single control channel. In addition, this paper provides additional motivation and discussion on the proposed
expanded reference model design including comparisons to the hedging approach as well as detailed proofs.

Throughout this paper, we use R for the set of real numbers, R" for the set of n x 1 real column
vectors, R for the set of n x m real matrices, R (respectively, R ) for the set of positive (respectively,
nonnegative) real numbers, R"*" (respectively, ﬁim) for the set of n X n positive-definite (respectively,
nonnegative-definite) real matrices, D"*" for the set of n x n real matrices with diagonal scalar entries, 0,
for the m x m matrix of all zeros, I, for the n x n identity matrix, and “2” for the equality by definition. We
also write (-)T for the transpose operator, (-)~! for the inverse operator, tr(-) for the trace operator, £{-} for

the Laplace transform operator, and e; for the standard basis fori = 1,...,n.

6.2 Problem Formulation

In this section, we introduce the problem considered throughout this paper. For this purpose,

consider the uncertain dynamical system given by

(1) = Ax(t)+B(Av(t)+W'x(r)), x(0)=xo, (6.1)
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where x(t) € R” is an available (i.e., measurable) state vector and v(r) € R™ is the actuator output of the

actuator dynamics satisfying

v(r) = —M(v(r)—u(t)), v(0)=vo, (6.2)

with u(r) € R™ being the control signal (i.e., the input of the actuator dynamics) and M € R™* " QD" is
constructed of diagonal entries m;; > 0, i = 1,...,m that represent the actuator bandwidth of each control
channel. In addition, A € R"*" is a known system matrix, B € R"*” is a known control input matrix,
W € R™™ is an unknown weight matrix, and A € R N> is an unknown control effectiveness matrix

that can be parameterized as

A = I,+8A, (6.3)

where SA € R (™™ is unknown'. Throughout this paper, we make the standard assumption that the
pair (A, B) is controllable.
Next, consider the reference model capturing a desired (i.e., ideal) closed-loop dynamical system

performance given by

xr(t) = Arxr(t)JFBrC(t)a xl‘(O):era (6.4)

where x;(7) € R" is the reference state vector, A; € R"*" is the Hurwitz reference model matrix, B, € R is
the command input matrix, and ¢(¢) € R™ is the desired uniformly continuous smooth and bounded reference
command. In the classical sense, the objective of the model reference adaptive control problem is to design
an adaptive feedback control law such that the state vector x(¢) at least closely follows the reference state
vector x(f) in the presence of system uncertainties captured by the unknown matrices “W” and “6A” that

appear in (6.1) and (6.3).

6.2.1 Actuators with Sufficiently Fast Dynamics

If the actuator dynamics given by (6.2) are sufficiently fast, then it is common practice to neglect

their presence. In this case, (6.1) becomes

IThe parameterized form of the unknown control effectiveness given by (6.3) is fairly adopted in literature (see, for example,
[95, 127-129])
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X(t) = Ax(t)+B((In+8A)u(t) +Wx(r)), x(0)=xo. (6.5)

In this approximate form, the control channel has direct access to the system uncertainties; hence, a standard
model reference adaptive control architecture can be easily implemented to suppress the system uncertain-
ties. To elucidate this well-known point and be self-contained, let the feedback control law be given as in

[95] by?
u(t) = —(n+SAW) T (WT(0)x(t) + Kix(t) — Kac(r)), (6.6)

where K; € R™*" and K, € R™ are the nominal feedback and feedforward gain matrices designed such
that A, 2 A — BK; and B, £ BK> hold. Furthermore, W(r) € R and SA(r) € R"™ " are the (online)

estimates of W and S A respectively satisfying the weight update laws

W(t) = yProj,[W(t), x(t)e"(1)PB], W(0) =W, (6.7)

SA(t) = oProj, [8A(t), B"Pe()u"(1)], S8A(0) = 8A, (6.8)

where ¥ € Ry and a € R, are learning rate gains, P € R’ is a solution of the Lyapunov equation 0 =
ATP+PA +R, R € R, and e(t) £ x(t) — x:(¢) is the system error state vector’. Using (6.4), (6.5), and

(6.6), the system error dynamics can then be written as

é(t) = Ace(t)—B(WT(t)x(t) + SA(t)u(t)), e(0) = e, (6.9)
where W (1) 2 W (1) —W € R” and SA(r) 2 SA(t) — SA € R™ ™,

From (6.9), the weight update laws (6.7) and (6.8) can be easily derived using the Lyapunov
function V(e,W,8A) = e"Pe+ vy 'tr WTW + o~ 'tr SATSA [5-7]. Specifically, from the time derivative
of this Lyapunov function, i.e., V(e(t), W(t)) < —eT(t)Re(t) < 0, one can conclude the boundedness of
the solution (e(r), W (t), 8A(r)) as well as lim, . V(e(t),W(t),8A(t))= 0, where the latter results from
Barbalat’s lemma [88]. This consequently shows that e(t) — 0 as r — oo, thereby achieving the classical

objective of the model reference adaptive control problem.

2To ensure (6.6) is implementable, the projection bounds for the estimate of SA(¢) in (6.8) can be defined such that I,, + SA(¢)
is invertible (see, for example, [95, 127, 130, 131]).
3Details on the projection operator are given in Appendix A
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6.2.2 Actuators without Sufficiently Fast Dynamics

For many real-world engineering applications, especially for safety-critical applications, when the
actuator dynamics given by (6.2) are not sufficiently fast, one must consider (6.1) and (6.2) together in order
to correctly represent the uncertain dynamical system to be controlled. This in turn implies the control
channel cannot directly access the system uncertainties for the purpose of suppressing their presence; hence,
the closed-loop stability characteristics of the model reference adaptive control architecture overviewed
in Section 6.2.1 no longer hold. To address this challenge, a well-respected approach in the aerospace
engineering field is the (pseudo-control) hedging method [30-33] (also see [95, 117, 118] and references
therein). In particular, this method alters the “ideal” reference model trajectory given by (6.4) with a hedging
term to allow for “correct” adaptation in the presence of actuator dynamics. In this case, the (altered)

reference model is given by

x(t) = Axe(t)+Bec(t) +B(v(t) —u(t)), x(0)=x0. (6.10)

Ideal Reference Model Hedging Term

Now, as in [95], let the feedback control law be given by

~

u(t) = —Kix(t)+Kac(t) —WT(t)x(t) — SA(t)v(1), (6.11)

where K; € R and K, € R™*™ are defined the same as in Section 6.2.1, W (¢) € R"™™ satisfies the weight

update law given by (6.7), and SA(r) € R™*" satisfies the weight update law given by

~ ~

SA() = aProj,[8A(), BTP(t)VT(1)], SA(0) = 8A,. (6.12)

It follows from adding and subtracting “Bu(t)” in (6.1) and using (6.11), the uncertain dynamical system

can be written as

X(t) = Awx(t)+Bec(t) —B(W()x(t) + SA(t)v(t))+B(v(t) —u(t)). (6.13)

The error dynamics then follow from (6.10) and (6.13) as

é(t) = Awe(t)—B(WT(t)x(t) + 8A(t)v(t)), e(0) = ep. (6.14)
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By considering the Lyapunov candidate function in Section 6.2.1 and using (6.7), (6.12), and (6.14)
one can show the Lyapunov stability; hence, boundedness of the solution (e(¢), W(r),5A(t)). To conclude
e(t) — 0 ast — oo, the boundedness of the modified reference model given by (6.10) is necessary. As shown

in [95], one can augment the reference model dynamics given by (6.10) and the actuator dynamics given by

(6.2) as
(1) A+BWT(r) B(L,+8A(t)) | |x() B(K+W'(t))e(r)
_ n .(6.15)
v(r) ~M(Ki+WT(t)) —M(L,+8A(r)) | | v() M (Kac(t) — (K +WT(1))e(t))
A(W(0).6A0)) o()

Since ®(-) is a bounded perturbation, one can conclude that x.(¢) and v(f) are bounded provided that
A(W(t),8A(t)) is quadratically stable (i.e., AT(W(t),5A(t))P+PA(W(),5A(t)) < 0, P =PT > 0). This
condition can be satisfied using LMIs (we refer to [95] for details). Now one can conclude that e(t) — 0
as t — oo by application of Barbalat’s lemma [88] once again achieving the classical objective of the model
reference adaptive control problem, but now for the presence of actuator dynamics through the alteration of

the ideal reference model dynamics with the hedging term.

6.2.3 Objectives of the Paper

Now, as overviewed in Section 6.2.2, the hedging approach [30-33, 95, 117, 118] is a way to address
the challenge resulting from the presence of actuator dynamics in uncertain dynamical systems. However,
by altering the trajectory of the ideal reference model with the hedging term, one introduces additional
transient terms to the reference model. One important transient term introduced is the system error signal
e(t) that appears inside the term @(-) of (6.15) (see also Remark 6.3.2). This particular transient term is
important, because while it is guaranteed that the system error asymptotically vanishes, it is not known,
without conservatism, how the transients of e(z) behave such that the trajectory of the the hedged reference
model can deviate from the ideal reference model trajectory in an unpredictable fashion.

The objectives of this paper can now be stated as follows: Consider the uncertain dynamical system

given by (6.1) with the actuator dynamics given by (6.2). Design an adaptive control architecture such that:
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i) The trajectories of the uncertain dynamical system follow the trajectories of a desired expanded
reference model, where this model does not include the effect from the system error e(z) (Section

6.3);
ii) Convergence to the ideal reference model given by (6.4) can be guaranteed (Section 6.4);

iii) Robustness to uncertainty in the actuator bandwidths M is obtained (Section 6.5).

6.3 Expanded Reference Models for Uncertain Dynamical Systems with Actuator Dynamics

We now introduce the proposed adaptive control architecture that allows for trajectories of the
uncertain dynamical system given by (6.1) to follow the trajectories of a desired reference model not
including the transients of the system error e(t). For this purpose, we consider an actuator model* and

design an expanded reference model as

X (1) A+BWT(r) B(L,+8A®1)) | |x() Onsm
= + c(t) (6.16)
ve(t) ~M(Ki +WT(t)) —M(L,+8A®t)) | |w(t) MK,
N’ N e N !
Z}(l‘) E (W(t)ﬁ;\(t)) Zr(l‘) G;

where K| € R™" and K, € R™™ are the nominal gains designed such that A, = A — BK; is Hurwitz,
B: = BK; with K, being nonsingular, and —EA;lBr = [ with E € R™*" being a matrix that allows a user to
select a subset x(¢) to follow ¢(¢). In addition, W (r) € R and SA(r) € R"™*™ NID" " are the estimates of

W and SA respectively for which the weight update laws are introduced later>-6.

4The assumed knowledge of the actuator bandwidth of the actuator model is relaxed in Section 6.5. Because, in real-world
applications, this bandwidth may not be precisely known but it is usually known with some error tolerance.

SWhile the reference model design in [132] is similar in spirit to the proposed expanded reference model, one significant
difference however is that the reference model matrix in [132] is designed using a matching condition assumption, where some
of the matrices used to construct the reference model matrix also include the system uncertainties such that it may not always be
possible to obtain an appropriate reference model matrix without explicit information of the system. In contrast, the expanded
reference model proposed in this paper, is shown to be purely constructed of known matrices and known signals. In addition, the
weight update law in [132] includes the actuator bandwidth m (scalar case) in the input matrix, whereas the proposed weight update
laws in this paper do not. This is important, because if the actuator bandwidth is sufficiently large, the weight update law in [132]
will produce a high gain adaptation effect (high-frequency oscillations in the control signal) which can cause instability through
excited unmodeled dynamics or violated rate saturation limits.

6Stability of the proposed expanded reference model is addressed in Theorem 6.3.1.
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Remark 6.3.1 The hedged reference model dynamics in (6.15) can be equivalently written as

(1) A+BWT(r) B(L,+8A(t)) | |x() Onscm o B(Ki+WT(t))e(t)
= + c(t) +
v(r) ~M (K +WT(t)) —M(L,+8A@)) | | v(t) MK, — (K1 +WT(t))e(r)
——
A(W(0).6A0)) B; 9(e(r))
(6.17)

Since the proposed expanded reference model given by (6.16) does not contain the additional ¢ (e(t)) term
as in (6.17), it is not be effected by the unpredictable transients of the system error. Thus, the proposed
architecture does not significantly alter the trajectories from the ideal reference model as compared with the
hedging approach. In fact, the structure of the expanded reference model given by (6.16) is intuitive (see the
next remark).

Remark 6.3.2 The proposed expanded reference model given by (6.16) approximates the ideal reference
model dynamics given by (6.4) as the actuator bandwidths become large. To elucidate this in a simple

setting, without loss of generality, consider the scalar control input case as

%) = (A+BWT(0)x(r) +B(1+8A(0)vel(r), (6.18)

ve(t) = —m(Ki+WT(0)xe(t) —m(1+8A(0))ve(r) + mKac(r). (6.19)

In the Laplace domain with zero initial conditions, (6.19) can be written as

D(s)

G

(6.20)

where ®(s) = E{—(Kl +WT(t))xe(t) — 82.(t)ve(1) +K2c(t)}. In addition, one can equivalently write
(6.18) as

%(1) = (A—BKi)x(t) +BKxc(t) + B(ve(t) + (Ki +WT())x:(2) + SA ()i (1) — Kac(t))

= Ax(t) +Bec(t) +B(vi(r) — 9(1)), (6.21)
or in the Laplace domain with zero initial conditions as

sX:(s) = AXe(s)+BC(s)+B(Vi(s) — D(s)). (6.22)
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Now, using (6.20) in (6.22) it follows that

sX:(s) = AXc(s)+BC(s)+B —1|®(s), (6.23)

m1ls+1

such that one can make the intuitive argument as m, the actuator bandwidth, becomes large, the reference
model dynamics given by (6.18) and (6.19) closely approximates the ideal reference model dynamics given
by (6.4) (i.e. %:(t) = Awx;(t) + Brc(t)) owing to the fact that the term in brackets of (6.23) becomes small as
m becomes large. This presents the intuition behind the structure of the expanded reference model given by

(6.16).

Next, to achieve tracking of the expanded reference model (6.16), let the feedback control law be

given by

~

u(t) = —Kix(t) +Kac(t) — W (t)x(t) — SA(t)v(z), (6.24)
where W (¢) satisfies the weight update law

W(t) = vProj, [W(t), x(1)Z" (1)PB*], W(0) =Wy, (6.25)

with y € R being the learning rate, 7(¢) = [¢T(¢), 7" ()]T € R"*" being the augmented error of the system

error state vector e(t) € R" and the actuator output error ¥(¢) 2 v(t) — v (t) €R™, P € RE:H'")X(”H") being a
solution of a matrix inequality for which further details are given below, and B* = [BT,0,,,x,n]T € R (m)xm

In addition, the projection bounds are defined such that Wiy it (j—1)n < W (1)), 7 < Winax,i+(j—1)ns fOr i =

1,...,nand j =1,...,m. Moreover, SA(t) is constructed from the elemental weight update laws

SAi(t) = aProj[SAi(r), vi(t)F (1)PB €], 8A(0)=8ho, i=1,..m, (6.26)
where o; € R, are the learning rates for each respective element, v;(¢) is the i element of the actuator
output vector, and e; is the standard basis for i = 1,...,m. Note here that by elementally updating we can set
SA(r) 2 diag([8A; (1), 8A2(1), ..., 8 Am(t)]) to estimate the uncertain diagonal elements of SA. The elemental
projection bounds are defined such that 55Li,min < Sii(t) < 5§L,~7max, for i = 1,...,m. The definition of the

projection operator [6] used in the weight update laws is given the Appendix A.
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Now, using (6.24) in (6.2) and adding and subtracting BWT (¢)x(¢) and B6A(t)v(t) to (6.1) we can

write the uncertain dynamical system and the actuator dynamics as

(1) = (A+BWT(t))x(t) +B(Ln+ SA(t))v(t) + B(W' (1)x(t) + SA(t)v(t)), 6.27)

v(t) = —M(K+WT(t))x(t) = M(Ly+ SA(t))v(t) + MKxc(t), (6.28)
which can be written in compact form as
(1) = K (W(I), 5[\(t))z(t) + Gc(t) — B* (WT(t)x(t) + 5;\(1‘)\/([)) . (6.29)

where z(t) £ [xT (1), VT (1)]T, W(t) = W (r) =W € R, and §A(r) = SA(r) — SA € R™*™ O\ D" Defining
the augmented error Z(t) £ z(t) — z:(¢), the following error dynamics can be written from (6.29) and (6.16)

i) = R(W(),8A(0)z() — B (W ()x(t) + SA(t)v(t)), Z(0) =%, (6.30)

which, owing to the diagonal structure of §A(z), can be equivalently rewritten as

m

) = Fr(W(t),s[\(t))z(t)—B*(WT(t)x(z)+Ze,»5a,-(z)vl-(;)), %(0) = Zo. 631)

i=1

The following assumption, which captures the fundamental interplay between the allowable system uncer-
tainties and actuator dynamics, is necessary for the feasibility of the model reference adaptive control in the

presence of actuator dynamics (also see (6.39) in the proof of Theorem 6.3.1 later).

Assumption 6.3.1 The matrix given by

) X A+BWT(t)+£l, B(ILy+ 8A(1))
A(W(r),6A(t),e) = : (6.32)
—M(Ki +WT(t)) —M(Ln+8A(t))+51,

with € € R, being a design parameter, is quadratically stable.

Remark 6.3.3 By definition, (6.32) is quadratically stable if and only if there exists a P > 0 such that
AT (W (1), 8A(t),€)P + PA(W(t),5A(t),€)< 0 holds [97, 98]. Using LMIs, we can satisfy the quadratic
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stability of (6.32) for given projection bounds Wax and 8Amax for the elements of W (t) and SA(t) re-
spectively, the bandwidths of the actuator dynamics M, and the design parameter €. For this purpose, let
W, € R™™ pe defined as

-

ilwmax,l + (1 - il)wmjn,l i1+nwmax,1+n + (1 - i1+n)wmin,l+n

i2"i>max,2 + (1 - iZ)ijn,Z i2+nwmax,2+n + (1 - i2+n)wmin,2+n

=

i],...,if

inwmax,n + (1 - in)wmjn,n iZnWmax,Zn + (1 - i2n)wmin,2n

i1+(m71)nwmax,l+(m71)n + (1 - i1+(m71)n)wmin,l+(m71)n

i2+(m71)nwmax,2+(m*1)” + (1 — i2+(m71)n)wmin,2+(m71)n , (6.33)

LmnWmax,mn + (1 - lmn)Wmin,mn

where iy € {0,1}, f € {1,...,2"™}, such that Wil,m’,-f represents the corners of the hypercube defining the

variation of W (t), and
mil,...,ig = diag([il Sﬁmax,l + (1 - il)Sﬁ'min,l, e imSimax,m + (1 - im)Simin,m] ) , (6.34)

where i, € {0,1}, g € {1,...,2™}, such that ﬂilm,-g represents the corners of the hypercube defining the

variation of SA(t). Now, let

T TN
A A+BWi1,...,if + %In B(Im—'_SAil"“vig) (6 35)
iyesin = _— ’ .
T
MK+ W, ) ML+ 8K, )+l

e
where h € {1,...,2™ +2""} be the corners of the hypercube constructed from all the permutations of W, __; /
and W\il,.-.,ig- For a given M, it can then be shown that
Ab WP+PAL, < 0, P>0, (6.36)
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implies that AT (W (1), SA(r), e)P+PAW(), 5[\(t),8) < 0/[96, 99]; thus, one can solve the LMI given by
(6.36) to calculate P, which is then used in the weight update laws (6.25) and (6.26).

Now that Assumption 6.3.1 can be satisfied through the use of LMIs as shown in Remark 6.3.3, we

are ready to state the following theorem.

Theorem 6.3.1 Consider the uncertain dynamical system given by (6.1), the actuator dynamics given by
(6.2), the expanded reference model given by (6.16), the feedback control law given by (6.24), and the
update laws given by (6.25) and (6.26). Under Assumption 6.3.1, the solution (Z(t),W (1), 8A(t)) of the

closed-loop dynamical system is bounded, lim;_,e(t) = 0, and lim;_,.v(t) = 0.

Proof. To show the Lyapunov stability; hence, the boundedness of the solution (2(¢), W(r), SA(t)),

consider the Lyapunov function candidate given by

V(EW,8A) = FPi+y 'uWW+Y o 'S (6.37)
i=1

=

Note that 1(0,0,0) = 0 and V(z,W,8A) > 0 for all (3,W,8A) # (0,0,0). Differentiating (6.37) along the

closed-loop system trajectories and using (6.25) and (6.26) yields

V(2(t),W(t),8A(t)) = 2zT(z)7>(Fr(W(r),5A(t))z(t) —B*"W(t)x(t) — B* feiﬁi,-(z)vi(;))

i=1
2y e Wi e)W(e)+2) o 54i(1)8A:(1)
i=1

~

= 20 (T (W (), 8A())P+PE(W (1), 6A()) )2(1)
2" (Y PB W (0)x(r) + 27 e W ()W (1)
27" (t)PB* (€161 (1)vi(t) +€2822(t)va(t) + - + €8 Am(t)vin(t))
+2 (0 S ()0 (1) + 0y 1830 (1) 8Aa(t) + -+ + Gy 3 A (1) A (1))
= £(0)(ET(W(0), 8A()) P+ PF(W (1), 6A()) ) (1)
27w W) (W) — yx()2" (1) PB")

+2 i OCi_l 611(1‘) (611(1‘) — OCZ'V,'(Z‘)ZT(I)PB*G,')
i=1

IN
IS\l
—
—
~
N~—
/N
SR

(W(t),6f\(t))7>+7>Fr(W(t),5f\(t))>2(t). (6.38)

By adding and subtracting £/, it follows that (6.38) can be equivalently written as
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<70 ((ROV0.0A0) +5hun) P+ P(ROV0.6A0) +510sn) ) 20 - 21 (P01
= 2(0) (AT (W (1), 6A(1), )P+ PA(W (1), A1), &) ) (1) — 2" (1) P(). (6.39)

Since A(W (1), SA(I),s) is quadratically stable by Assumption 6.3.1 (satisfied using LMIs, see Remark
6.3.3), it follows further from (6.39) that V(2(t),W (¢), 6A(t)) < —&z"(t)PZ(t) < 0, which guarantees the
boundedness of the solution (%(1), W (¢), SA(t)).

To conclude lim,_,we(t) = 0 and lim,_,.7(z) = O it is necessary to show that x;(¢) is bounded.
From Assumption 6.3.1, it follows that AT (W(t),ﬁf\(t),s)? +77A(W(t),5f\(t),8)< 0, which can be
equivalently written as FT (W (), 8A(t))P + PE (W (t),8A(r)) < —eP < 0, and hence, F; (W (t), SA(r)) is
quadratically stable. Since F; (W (), A(t)) is quadratically stable and G,c(t) is bounded, it follows that x;(r)
and v, () are bounded. It follows that V((), W (), SA(t)) is bounded’ such that from Barbalat’s lemma [88]
it can be concluded that lim,_,., V(2(t), W (t), 5A(r)) = 0; hence, lim,_,0e(t) = 0 and lim,,,#(t) =0. W

As discussed in Remark 6.3.1, the proposed adaptive control architecture can improve the per-
formance as compared to the hedging approach by removing the transients of the system error e(z) from
the proposed expanded reference model. In addition, as shown in Theorem 6.3.1, the trajectories of the
uncertain dynamical system follow the trajectories of the desired reference model. Yet, like the hedging
approach but without depending on the system error, the proposed expanded reference model still alters the
ideal reference model given by (6.4) (especially when the actuator bandwidths are small, see Remark 6.3.2),
such that the trajectories can still be modified from the trajectories which capture the desired closed-loop
dynamical system performance. In the next section, we show that the proposed expanded reference model
can be guaranteed to converge to the ideal reference model given by (6.4) such that the desired closed-loop

dynamical system performance can be captured by the uncertain dynamical system.

6.4 A Command Governor Architecture for Performance Guarantees

In this section, we provide guarantees on the performance of the proposed adaptive control ar-
chitecture. This is done by implementing a command governor architecture in the expanded reference

model presented in the previous section such that its trajectories converge, in a predictable fashion, to the

7 Additional details and discussion on the boundedness of V() are given in Remark 6.4.1.
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trajectories of the ideal reference model®. Now, we augment the expanded reference model given by (6.16)

with a command governor architecture as

4(t) = F(W(),8A())z(t) + Greg(t) (6.40)

cg(t) = c(t)+DE(t), (6.41)

where ¢(¢) € R™ is the uniformly continuous smooth and bounded reference command used in (6.4) and
(6.16) (since c(t) is a user-defined smooth function, we implicitly assume that ¢(¢) is bounded as well as
available) and DE (¢) € R™ is a command governor signal with D £ K, 'M~! € R™*™ and &(t) € R™ being

the command governor output given by
§1) = (bt 8AM) " (~1p(6) = 01(1)) =0 (0). (6.42)
where 1 € R, is the command governor gain, p € R™ is the command governor state vector
p(t) & (Ki+WT()xe(t) + (In+ SA(r) ) ve(t) — Kac(t). (6.43)

In addition, a backstepping-like approach is used to design the command governor signals’

1>

01(1) (Ky + W (1)) ( (A+BWT(1))x:(t) + B (I + 5[\@))vr(z)) —K>é(t)

+SAE)elr) + W (1))

= (Ki+WT() ((A +BWT (1)) xe(t) + B (I + SA(t))vr(z)) —Ké(t)
—l—diag( [a,-Proj (52:(t), vi(t)Z" (1)PB"e] } ) vil(7)

+y(Projm[W(z), x(t)ZT(t)PB*])Txr(t), i=1,..,m, (6.44)

1>

0 —M (K + W (2))x:(t) — M (L, + SA(r) ) ve(£) + MKoc(2). (6.45)
8 A command governor architecture is also used by the authors in [81] to improve transient performance and [19] for dynamical
systems with unmatched uncertainties. The implementation of the proposed command governor architecture in this paper is however
different from these in that we use it with the reference model to improve its performance in the presence of actuator dynamics. We
also refer to the survey paper [133] for more applications of command governors (also referred to as reference shaping techniques)
for both adaptive and non-adaptive control architectures.
9We refer to the proof of Theorem 6.4.1 and particularly (6.55)-(6.57) for how (6.44) and (6.45) are designed.
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It should be noted that K; € R™*" and K, € R™* are the same nominal control gains given in Section 6.3,
W e R"™" satisfies the weight update law given by (6.25), and §A(r) 2 diag([641 (1), SAx(1), ..., 8 (1)])
satisfies the elemental update laws given by (6.26). The only additional modification is to the feedback

control law now given by

A

u(t) = —Kix(t)+Kacg(t) =W (t)x(t) — SA(t)v(t), (6.46)
to achieve tracking of the command governor based expanded reference model given by (6.40).
As in Section 6.3, by adding and subtracting BW T (¢)x(¢) and BSA()v(z) to (6.1) and now using

(6.46) in (6.2), we can write the augmented uncertain dynamical system and actuator dynamics in compact

form as

it) = E(W(t),8A(t))z(t) + Greg(t) — B* (W (t)x(r) + SA(t)v(r)). (6.47)

It then follows from (6.40) and (6.47) that the system error dynamics can be given identically as (6.30)

(equivalently written as (6.31)).

Lemma 6.4.1 Consider the uncertain dynamical system given by (6.1), the actuator dynamics given by
(6.2), the expanded reference model given by (6.40), the feedback control law given by (6.46), and the
update laws given by (6.25) and (6.26). Under Assumption 6.3.1, the solution (Z(t),W(t), 8A(t)) of the

closed-loop dynamical system is bounded.

Proof. Owing to the modification to the feedback control law given by (6.46) resulting in the same
system error dynamics as in Section 6.3, the proof follows as the first part of the proof for Theorem 6.3.1. As
a brief review of this, consider the Lyapunov function candidate given by (6.37). Differentiation of (6.37)
and application of (6.25) and (6.26) results in V(2(¢),W (), A(t)) < —€z" (t)PZ(r) < 0, which guarantees

the Lyapunov stability, and hence, the boundedness of the solution (2(t), W (¢), 5A(z)). [

Remark 6.4.1 As in the proof of Theorem 6.3.1, it is necessary to show the proposed expanded reference
model given by (6.40) is bounded. This is because in order to use Barbalat’s lemma [88] to show that
lim, o0 V(2(1),W (1), 8A(t)) = 0, and hence, lim;_we(t) = 0 and lim,_,o7(t) = 0, one still needs to show that

V(Z(t),W(t),SA(t)) is bounded. To elucidate this point, note that it follows from the proofs of Theorem
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6.3.1 and Lemma 6.4.1 that one can write

~

V(E(),W(t),8A(1) = —2e7(1)P5(t)
— e ()P (E(W(z), 5A(1))z(t) - B' (WT(z)e(z) + 5]\(:)9(;))

B (WT(t)xr(t) n 5Z\(z)vr(t)) : (6.48)

where at first, it is not yet known that x(t) and v(t) are bounded due to the expanded reference models con-
sidered in (6.16) (for Theorem 6.3.1) and (6.40) (for Lemma 6.4.1). As shown in the proof of Theorem 6.3.1,
it is relatively straightforward to show boundedness of the expanded reference model given by (6.16) under
Assumption 6.3.1, which implies the quadratic stability of E(W(t), 5[\([)), and owing to the boundedness
of the term “Gyc(t)”; thus one can use Barbalat’s lemma to conclude the proof. This is where the analysis
will differ for the modified expanded reference model given by (6.40), since it now includes the command
governor architecture in the term “Gcg(t)”.

Motivated by the discussion in Remark 6.4.1, we now show that the proposed implementation
of the command governor architecture not only ensures boundedness of the expanded reference model
given by (6.40), but also guarantees that the trajectories of the expanded reference model given in (6.40)
asymptotically converges to the trajectories of the ideal reference model given by (6.4), capturing the desired

closed-loop system performance. For this purpose, we restate the ideal reference model dynamics given by

(6.4) with new notation as
xri (t) = Arxri (t) + BrC([), Xr; (0) = X1,0, (649)

where x;(t) € R" is the ideal reference model state. In addition, we define %(t) = x(t) — x;,(t) to be the

error between the modified reference model and the ideal reference model states.

Theorem 6.4.1 Consider the uncertain dynamical system given by (6.1), the actuator dynamics given by
(6.2), the ideal reference model given by (6.49), the modified expanded reference model given by (6.40), the
command governor architecture given by (6.41), (6.42), (6.43), (6.44), and (6.45), the feedback control law
given by (6.46), and the update laws given by (6.25) and (6.26). Under Assumption 6.3.1, then (x;(t),v:(t))

are bounded, limy_,o%:(t) = 0, lim;_,ep (t) = 0, liny_0e(t) = 0, and lim; V(1) = 0.

157

www.manaraa.com



Proof. We first write the modified expanded reference model given by (6.40) in its augmented form

as

% (1) A+BWT(r) B(L,+8A(t)) | |x(t) Opxcm
= - co(t). (6.50)
Ve (1) ~M (K +WT(t)) —M(L,+8A@)) | [v(t) MK,
—— —— —
2(1) E(W(l‘),ﬁ[\(l‘)) Z(1) Gy

Considering the x;(#) dynamics, we add and subtract the terms “BKx;(¢)” and “BK,c(t)” such that one can

write

i(t) = (A—BK))x(r) +BKac(r) —|—B(K1xr(t) — Kac(t) + W () () + (I + 5A(z))vr<t))

= Aw(r) + Bee(1) +B((K1 AW () (1) + (In+ SA () ) ve (1) — ch(r>) : (6.51)
which can be equivalently written using (6.43) as
x(t) = Awx(t)+Be(t)+Bp(t). (6.52)

Now, it follows from (6.49) and (6.52) that the reference model error dynamics between the ideal reference

model and the proposed modified reference model can be given by
(1) = A&()+Bp(1). (6.53)

From (6.53), if we can show p(t) — 0 as r — oo, then the modified reference model trajectories will converge
to the ideal reference model trajectories. In light of this, we differentiate p(7) in time to obtain the following

dynamics
pt) = WT(Ox(t)+ (K +WT(0)kclt) — Kac (1) + SAQ)ve(t) + (I + SAE))0e().  (6.54)
Using the x;(7) and v;(¢) dynamics of (6.50) in (6.54) yields

plr) = WT(Ox(t)+ (Ki+WT(r)) ((A +BWT(0))xe(r) + B+ 6A(z))vr(t)> —Ké(t) + SA()w (1)

+ (I, + 8A(1)) [—M(Kl +WT(0))xe(t) = M (L + SA()) ve(t) + MKy + & (r)} : (6.55)
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Using the command governor signal (6.42) in (6.55) gives the following

A

plr) = WT(Ox(t)+ (Ko +WT(r)) ((A +BWT (1)) xe(t) + B (I + 5A(t))vr(t)> —Ké(t) + SA)w (1)
o (4 SAW)) | =M (Ky + W (0)11(0) = M (I + SAW) 1) + MK = (1)

—up(t)—o1(2) (6.56)

where applying the signals (6.44) and (6.45) results in the following dynamics

pit) = —up(). (6.57)

Now, using (6.53) and (6.57), the error dynamics between the reference models can be written compactly as

X (1) A, B % (1)
= . (6.58)
p(t) Omxn  —Mln | | P(2)
~—_—— —_———
X% (1) Ay (1)

Since A, is Hurwitz, g > 0, and A, is in upper triangular form, lim, ;% () = 0 and lim,_,.p(t) = 0 are
immediate.

Finally, since x;,(¢) is bounded and x,(r) = %:(¢) + x;, (), it follows that x(¢) is bounded, and since
x; is bounded and p(z) is bounded, and owing to the projection based weight update laws, W (¢) and SA(r)
are both bounded, and since the input command ¢(7) is bounded, it follows from (6.43) that v,(¢) is bounded.
Now, as a consequence of Lemma 6.4.1, 7(t), W(z) and SA() are all bounded, such that it can now be
concluded that V (2(¢),W(r), 8A(t)) as given by (6.48) is bounded. Barbalat’s lemma [88] can now be used

to conclude that lim,_,..V(2(t), W (¢), 8A(t) )= 0, and hence, lim,_,e(#) = 0 and lim,_,¥(¢) = 0. [ ]

Remark 6.4.2 The performance guarantees obtained in this section can be seen from the augmented dy-
namics given by (6.58), which show that the modified expanded reference model trajectories converge to the

ideal reference model trajectories when

x(t) = ey (0), (6.59)
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vanishes, where it is well known that the rate of convergence depends on the maximum eigenvalue of A.
Moreover, if x:(0) = 0 can be selected, then x:(t) = 0 for all time and the modified expanded reference
model trajectories exactly capture the desired closed-loop system performance of the ideal reference model.
It should be noted here that since the ideal reference model dynamics are solely used for analysis purposes,

one can trivially select x,0 = xxo such that with p(0) = 0 it follows that X;(0) = 0 holds.

Remark 6.4.3 From Theorem 6.4.1, since lim;_,e(t) = 0 (meaning that the uncertain dynamical system
trajectories asymptotically converge to the modified expanded reference model trajectories) and lim, % (t) =
0 (meaning the modified expanded reference model trajectories converge to the ideal reference model
trajectories) then asymptotic convergence between the uncertain dynamical system and ideal reference

model trajectories is achieved.

At this point, the proposed adaptive control architecture using expanded reference models is shown
to allow for convergence of the trajectories of the uncertain dynamical system to the trajectories of a desired
reference model, where the desired reference model does not include the unpredictable effect from the
transients of the system error e(¢), and can also be modified to further guarantee convergence to the ideal
reference model given by (6.4) (also given by (6.49)). Yet, the construction of the proposed expanded
reference model designs require knowledge of the actuator bandwidths which may not always be possible.
For this reason, the next section relaxes this condition to allow for a more robust design in the presence of

unknown actuator bandwidths.

6.5 Robustness of Expanded Reference Model Architecture to Unknown Actuator Bandwidths

In this section, we consider the case in which the actuator bandwidths are not completely known
such that the proposed expanded reference model needs to be redesigned using an estimate of the unknown
part allowing for a more robust architecture. For this purpose, we parameterize the actuator bandwidth

matrix such that (6.2) is now given by

v(t) = —(Mo+8M)(v(r)—u(r)), v(0)=ro, (6.60)

where M € R*™ NID™*™ represents a known part of the actuator bandwidths and M € R™*™" 0 D"™*™

represents the unknown variations in the actuator bandwidths.
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To obtain the same performance guarantees as Section 6.4, we again augment a command governor

architecture with the expanded reference model now given by

(1) A+BWT(r) B(L, + 8A(1)) x (1)
ve(t) —(Mo+8M(t)) (K +WT(2)) —(Mo+8M(t)) (I +S8A®t)) | |[w:(t)
4(r) F (W (1).8A0),8M(r)) (1)
0n><m
+ cg(t), (6.61)
(M() + 5M(l>)K2
G (80(1))

where 8M(t) € R™ ™ NID™*™ is an estimate of M constructed from the elemental weight update laws

Sini(t) = —PBiProj[8my(t), o;(")Z" (1)PGe;], 8m;(0) = 8rng, i=1,...,m, (6.62)

where B; € R is the learning rate for the respective estimates, o;(-) is the i element of the vector re-
sulting from the feedback given by o(-) £ (L, + SA(t))v(t) + (Ki + WT(1))x(t) — Kace(t) € R™, G =
[Oan,Imxm]T S R(”+m)x’”, and e; is the standard basis for i = 1,...,m as in the previous section. Note
here again by elementally updating we can set 87i1(t) = diag([8ri11 (1), 8rita(t), ... , 87ty (t)]). The elemental
projection bounds are defined such that 87 min < 87t;(t) < 61t max, fori=1,...,m.

In (6.61), the signal ¢4 (?) is given by

cgt) = c(t)+D)S(1), (6.63)

where ¢(t) € R™ is the uniformly continuous smooth and bounded reference command used in the previous
sections (again, since ¢(t) is a user-defined smooth function, we implicitly assume that ¢(z) is bounded as
well as available), D(t) = K, ' (Mo + 6M (t))fle R™ ™. Note here that in practice, the nominal known
part of the actuator bandwidth M is larger than the variation given by M such that one can select the
projection bounds on SM(t) to ensure (Mg + 8M(¢))~! is implementable. Similar to Section 6.4, the

command governor output & () € R™ is given by

E(t) = (It 8AW) ™ (—up(t) — 05 (1) — 03 (0), (6.64)
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where 1 € R is the command governor gain, p(z) € R™ is the command governor state given by (6.43),

o7 (t) = ¢1(t) € R™ with ¢;(¢) given by (6.44), and the signal ¢; (r) € R™ satisfies'®

() & —(Mo+SM(t)) (K + W (t))xe(t) — (Mo + SM(t)) (In + SA(2)) e (t)

+ (Mo + 6M(t)) Kxc(t). (6.65)

In addition, it should be noted that K; € R™*" and K, € R™*™ are the same nominal control gains given in
Sections 6.3 and 6.4, W € R"*™ satisfies the weight update law given by (6.25), and §A(r) £ diag([8A, (1),
822(1), ..., 6 A, (1)]) satisfies the elemental update law given by (6.26), and the feedback control law is given
by (6.46).

By adding and subtracting BWT(t)x(r) and BSA(t)v(t) to (6.1), adding and subtracting SM(¢)
-(v(t) — u(r)) to (6.60), and using (6.46), we can write the augmented uncertain dynamical system and

actuator dynamics in compact form as

it) = FR(W(t),8A(t),8M(t))z(t) + G (8M(1))co(t)

—B* (W (t)x(t) + SA(t)v(t))+GSM(t)o (), (6.66)

where SM(t) 2 8M(t) — M. It then follows from (6.61) and (6.66) that the system error dynamics can be

given as

50) = F(W(),8A0),8M(1))3() — B (W (0)x(r) + SA()v(1)) +GSM ()5 () Z(0) = Z. (6.67)

In addition, owing to the diagonal structure of SA(t) and §M(t), (6.67) can be equivalently written

1) = E(W(t),5/A\(t)5M(t))Z(t)—B*(WT(t)x(t)+ﬁen‘ii,-(t)v,-(t))+Gﬁei5ﬁ1i(t)6i(-). (6.68)
i=1 =

i=1

The following assumption, which is a slightly modified version of Assumption 6.3.1, is necessary for the

results in this section.

10Here we refer to the proof of Theorem 6.5.1 and particularly (6.79) and (6.80) for how ¢; (¢) and ¢ () are designed for this
section.
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Assumption 6.5.1 The matrix given by

A(W(),8A(t),M(t),€)
A+BWT(1)+£1, B(L,,+ 8A(r))
= , (6.69)
—(Mo+8M(1)) (Ki + W (1)) —(Mo+8M(t)) (In+ 8A(t))+EL,

with € € R, being a design parameter, is quadratically stable.

Remark 6.5.1 As shown in Section 6.3, we can similarly use LMIs to satisfy the quadratic stability of
(6.69), for given projection bounds Wyay, SijaX, and 8Miyax, on the elements of W(t), 6[\(t), and SM (1)
respectively, for the known parts of the actuator bandwidths given by My, and for the design parameter €.
For this purpose, we first write (6.69) as

A+BWT(t)+ 51,

A() = ) ) o
—MoK; — MW (t) — M (1)K, — SM(t)WT(¢)

B(L,+ 8A(t))
(6.70)
—Mo — MoSA(t) — SM(t) — SM(t)SA(t) + £l

Now, let Wil,m,if € R™™ pe defined as (6.33) and 57A,-1W,~g € R™ MmN " pe defined as (6.34) to represent

.....

be defined as
67Mi1,..‘,ih = dlag( [ilsrhmax,l + (1 - i1>5ﬁ1min,1 ey imsmmax,m + (1 - im)ammin,m] ) ) (671)

where iy, € {0,1}, h € {1,...,2™}, such that Wh i, represents the corners of the hypercube defining

7777

the variation of SM(t). In addition, due to the product terms of SM(t)W™ (t) and SM(t)SA(r) in (6.70),
let the variations of Q(t) £ SM(t)W(t) and T1(t) £ SM(t)5A(t) be respectively defined as Q;,._; =

SM;, .. thil,....,if and11;, ;. = 57Ml~|’__“,~h57A,~1’,_7,~g, where r € {1, ...,2’"2“’} and s € {1, ...,2’"“}. Then
A+BW, . +El,
A iy = . o B
—MoKy —MoW;, i — My i Ky — Qi L,
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, (6.72)
_MO_M06A11 ..... ig 6M[1,...,ih Hl],..‘,is +%Im
represents the corners of the hypercube constructed from all the permutations of W,-] i 57/\“7 igr Wi, oeip?
Qi i, and Il ;. For a given My, it can then be shown that
AL P+PA, i, < 0, P>0, (6.73)

implies that AT(W (1), 8A(t),5M(t),€)P + PA(W(t),5A(r),8M(t),€)< 0 [96, 99]; thus, one can solve
the LMI given by (6.73) to calculate P, which is then used in the weight update laws (6.25), (6.26), and

(6.62).

Now that Assumption 6.5.1 can be satisfied through the use of LMIs as shown in Remark 6.5.1, we

are ready to state the following theorem.

Theorem 6.5.1 Consider the uncertain dynamical system given by (6.1), the actuator dynamics given by
(6.60), the ideal reference model given by (6.49), the expanded reference model given by (6.61), the com-
mand governor architecture given by (6.63), (6.64), (6.43), (6.44), and (6.65), the feedback control law
given by (6.46), and the update laws given by (6.25), (6.26), (6.62). Under Assumption 6.5.1, the solution
(2(t),W(r),8A(r),8M(t)) of the closed-loop dynamical system is bounded, limy—,o%:(t) = 0, lim_.p (1) =

0, limy_e(t) = 0, and lim;_.7(t) = 0.

Proof. To show the Lyapunov stability; hence, the boundedness of the solution (2(¢), W(r), SA(r),

8M(t)), consider the Lyapunov function candidate given by

V(EW,8A,6M) = FPi+y 'uWW+Y o '6A7+ Y B 67 (6.74)

m
i=1 i=1

Note that 1(0,0,0,0) = 0 and V(,W,8A,8M) > 0 for all (,W,8A,8M) # (0,0,0,0). Differentiating

(6.74) along the closed-loop system trajectories and using (6.25), (6.26), (6.62) yields
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V(2(t),W (1), 8A(t), M (1))
= 22"(0)P(F.(W (1), 8A(), 831(1))2(0) - BW ' (0x(0) ~ B Y e:6%:(t)ilt)

i=1

+G i e,-5ﬁ1,-(t)o,-(-)) 2y e W ()W (1) +2 i ' 82,(1)8 (1)
= i=1

A
+2iﬁ;15mi(z)5ﬁ¢i(z)
_m) (R (W(0),8A(4), 83(0)) P+ PE(W (1), 8A(), 831(1)) ) (1)
=22 (1) PB W (0)x(t) + 2y ' WH(O)W (1)
—2Z"(t)PB* (e161(1)v1(t) +€282a(t)va(t) + - + €A (1) V(1))
+2 (0 S ()0 (1) + 0y 1830 (1) 80 (1) + -+ A (1) A (1))
+27"(1)PG (€167 (1) 01 (-) + €282 (£) 02 (-) + - + €281t (1) O (-) )
+2(By 8 (1) 81 (1) + By 81ia (1) Srba (1) + -+ By S (1) St (1))
= 27() (KT (W(1), 8R(), 8M1(1)) P+ PE(W (1), 8A(1). 831(1)) ) (1)
2w W) (W (1) — x(0)F" () PB°)

+2Y 07 87i(1) (844(1) — cumi(1) T (1) PB"e;)
i=1
+2 Y B i (t) (87u(t) + Bioi(-)Z" (t) PGe)
i=1
<#'() (FrT (W(t),5A(), 8M(t)) P+ PF(W(t), SA(r), SM(t)))Z(t). (6.75)
Following similar steps as the proof of Theorem 6.3.1, one can show under Assumption 6.5.1 (satisfied
using LMIs, see Remark 6.5.1), that (6.75) reduces to V(2(t),W(t),8A(t), 6M (1)) < —e2" (t)PZ(t) <0,
which guarantees the boundedness of the solution (Z(t),W (¢), 5A(r),8M(t)).
Now, following similar steps as the proof of Theorem 6.4.1, by adding and subtracting the terms

“BKix:(t)” and “BK»c(t)” to the x;(¢) dynamics of the expanded reference model given by (6.61) we can

write

X(t) = Awx(t)+Bec(t) +Bp(t). (6.76)
From (6.49) and (6.76) the reference model error dynamics can be given as

5(t) = A&()+Bp(1). (6.77)
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Differentiating p () in time, we obtain the following dynamics
p) = WT(Ox(t)+ (K +WT(0)k:(t) — Kaé(t) + SA@)ve(t) + (I + 8A())0e(),  (6.78)
and using the x;(¢) and v;(¢) dynamics of (6.61) in (6.78) yields

p(t) = WI(Ox(t)+ (Ki+W'(r)) ((A +BW (1)) x:(t) + B(Ln + 6f\(t))vr(t)> —Kaé(t) + SA()vi(1)
+(In+ A1) [— (Mo+ M (1)) (K + W (1)) xe(t) — (Mo + SM(2)) (I + SA(2) ) we (1)

+(Mo+6M(t))K2+<§(t)] (6.79)
Using the command governor signal (6.64) in (6.79) gives the following

p(t) = WI(Dx(t)+ (Ki+W'(r)) ((A +BW(1))x:(t) + B(Ln + Sf\(t))vr(t)> —Kaé(t) + SA(t)vi (1)
(I + SA)) [~ (Mo + 31(1)) (Ky +WT(1)) () — (Mo + 3M1(1)) (B + SA)) i)

(Mo -+ 8N1(0)) Ko — 93 (1) |~ (1) — 97 (1) (6.80)

where applying the signals (6.44) and (6.65), (6.80) reduces to p(t) = —up(t), such that the dynamics can
be augmented with (6.77) as

= . (6.81)

Since A; is Hurwitz, u > 0, and (6.81) is in upper triangular form, lim; ,..%: () = 0 and lim, ,.p (#) = 0 are
immediate.

Finally, since x,(¢) is bounded and x;(¢) = %:(¢) + x;,(r), then x(z) is bounded, and since x; is
bounded and p(r) is bounded, and owing to the projection based weight update laws, W (¢), SA(t), and
SM(t) are all bounded, and since the input command c(¢) is bounded, it follows from (6.43) that v,(¢) is
bounded. In addition, from the Lyapunov stability of the solution (Z(z),W (¢), 6A(t), 6M(t)) we know Z(r),
W (t), 8A(t), and 5M (t) are all bounded, such that it can now be concluded that V (2(¢), W(t), 5A(r), M (1))
is bounded. By Barbalat’s lemma [88], lim;_..V’(2(t), W (t), 8A(t),8M(t)) = 0; hence, lim,_,e(t) = 0 and
lim,_,o¥(t) = 0. |
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Remark 6.5.2 The conclusions noted in Remarks 6.4.2 and 6.4.3 can be made here as well, but now for the
case in which the actuator bandwidths are unknown.
The next section considers an application to a hypersonic vehicle, where we apply the most general

form of the proposed adaptive control architecture given in this section.

6.6 Illustrative Example

To elucidate our proposed approach to the actuator dynamics problem, we provide the following
application to a hypersonic vehicle. Specifically, consider the uncertain hypersonic vehicle longitudinal

dynamics given by the short-period approximation as

—239%x 107! 1 —1.33x107*
x(t) = x(t) + (Av(t) +WTx(2)), (6.82)
4.26 —1.19x 107! —1.84x 107!
A B

with zero initial conditions and the state vector being defined as x(¢) = [e(¢),q(t)]T, where () denotes the
angle-of-attack and ¢(t) denotes the pitch rate. The uncertainty is considered to be W = [—100 .01]T such
that it dominantly effects the stability derivative C,,,. Specifically, the value —100 creates a 400% increase
in Cp,,,, destabilizing the nominal closed-loop system, whereas the second value 0.01 can be considered to
be small since it does not significantly effect the closed-loop performance of the hypersonic vehicle, which
is lightly damped. In addition, the control effectiveness A = 1 + A, with A being the unknown variation,
is considered to be 25% deficient such that 64 = —0.25. The actuator output v(¢) is given by the actuator

dynamics

W(1) = —m(v(t) — u(r)), (6.83)

where u(t) denotes the elevator deflection command and m is the actuator bandwidth which is scalar since
we are considering a single input control channel. The actuator bandwidth is m = 10 & 0.25 rad/sec, such
that it can be parameterized as m = mg + 6m, with my = 10 rad/sec and dm € [—0.25,0.25] rad/sec. For
this example, we set the unknown portion as dm = —0.25 rad/sec such that there is less available bandwidth

than the assumed my value.
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Linear quadratic regulator theory [91] is used to design the nominal controller for both the proposed
control design and a hedging based control design (for comparison purposes). The feedback gain matrix
K is designed such that A, = A — BK; is Hurwitz using the weighting matrices Q = diag([5 x 10° 10?]) to
penalize the states and R = 25 to penalize the control input, resulting in K; = —[156.3459, 40.9615] that
has a desirable 65.4° phase margin and a crossover frequency of 7.95 rad/sec. The feedforward gain K,
is designed such that the desired angle-of-attack position o(z) is followed. For this purpose, using E =
[1,0], the gain K, is calculated as K» = —(EA,; 'B)~! = —143.2845. The desired angle-of-attack command
in degrees is generated using c(7) = 2sin(0.5¢). In addition, the same learning gains are used for both
controllers given by I' = 103, a = 10, and B = 10. For hedging based control design, the solution to
ArTP—i—PAr + Ry = 01is calculated with R = diag[103, 103] (selected as in [118], in which it was appropriately
tuned for desirable performance). In the proposed controller we use the feasible solution P from the LMI
analysis in Remark 6.5.1 which can be obtained for the consider example set-up and with the selected
elemental projection bounds given by —105 < [W (1)] 1 <0,0< [W(I)}z <0.1,—0.2625 < 8A.(r) <0, and
|6mi(1)| < 0.2625.

Figures 6.1 and 6.2 highlight the performance guarantees discussed in Remark 6.4.2 (and Remark
6.5.2). In particular, Figure 6.1 shows the convergence of the proposed expanded reference model trajec-
tories to the ideal reference model trajectories for different values of u. From Remark 6.4.2 and for the

considered example set-up we have

—0.2599  0.9946 —0.0001

Ar=1-245199 —7.6583 —0.1841] - (6.84)

0 0 —U

For the three different values of u shown in Figure 6.1, the resulting rates of convergence matched to the
p value follow as (ft = 0.5, Amax (Ar) = —0.5), (1 = 1.0, Amax(Ar) = —1.0), and (1 = 10, Amax(Ar) =
—3.9591). These correspond to the approximately 8 sec, 4 sec, and 1 sec convergence times depicted in
Figure 6.1. Furthermore, Figure 6.2 shows the case in which the initial conditions are zero and the proposed
expanded reference model trajectories captures the ideal reference model trajectories exactly.

Figures 6.3 and 6.4 compare the control performance between the proposed adaptive control archi-

tecture using expanded reference models augmented with a command governor architecture and a hedging
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based adaptive control architecture. Specifically, it can be seen in Figure 6.3 that the proposed expanded ref-
erence model trajectories identically capture the ideal reference model trajectories (i.e., x:(0) = 0) whereas
due to the transients of the system error signal e(z), the hedged reference model trajectories deviate from
the ideal reference model trajectories. The actual state trajectories of the uncertain hypersonic vehicle also
converge to the expanded reference model trajectories (hence the ideal reference model trajectories) for
the proposed adaptive control architecture quicker than the hedging based adaptive control architecture. In
addition, Figure 6.4 shows that the magnitude of the applied adaptive control signal and actuator output
is less for the proposed adaptive control architecture as opposed to the hedging based adaptive control

architecture.

-------- a,(t) Ideal
— —ax(t) (u=0.5)
%o ==y (t) (p=1.0)
— - - on(t) (u=10.0)
3

- =10 ||
-- =100
8 9

t [sec]

Figure 6.1: Convergence of expanded reference model trajectories to the ideal reference model trajectories
for different rates of convergence.
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T T T T
0 1 —a,(t) Ideal h
=, - a(t) (x:(0) = 0)
= Y i
g -1r .
| | | | | | | | |
0 1 2 3 4 5 6 7 8 9
t [sec]
— I I
= -~ (1) (x:(0) =0)
g 0
S,
<-05
s‘ | | | | |
0 1 2 3 4 5 6 7 8 9
t [sec]

Figure 6.2: Expanded reference model trajectories exactly capturing the ideal reference model trajectories

for zero initial conditions.
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3
-1
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. i ——q(t) Proposed
1 g Srai% |- -a:(t) Hedged
9 = LR RN LA Ny q(t) Hedged
{
a0 0 =
()
= ’\ L/ a Z
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Figure 6.3: Comparison of the proposed expanded reference model control performance and a hedging
based control performance.
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Figure 6.4: Control inputs and actuator outputs for Figure 6.3.

6.7 Conclusion

In this paper, we documented a new model reference adaptive control architecture for uncertain
dynamical systems with actuator dynamics. We first showed that the trajectories of the expanded refer-
ence model remain predictably close to the trajectories of the ideal reference model as compared to the
hedging approach, and we then show that asymptotic convergence to the ideal reference model trajectories
is guaranteed by utilizing a new command governor architecture developed for the proposed expanded
reference model. In order to achieve a robust implementation in the presence of possible uncertainties
in the bandwidths of actuator channels, we also redesigned the expanded reference model with the estimate
of actuator bandwidths. Finally, a numerical application to a hypersonic vehicle model elucidated our

contributions and presented comparisons with the hedging approach.
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CHAPTER 7: DECENTRALIZED ADAPTIVE ARCHITECTURES FOR CONTROL OF
LARGE-SCALE ACTIVE-PASSIVE MODULAR SYSTEMS WITH STABILITY AND
PERFORMANCE GUARANTEES!?

Decentralized control of large-scale active-passive modular systems is considered in this paper. The
considered class of large-scale systems consist of physically interconnected and generally heterogeneous
modules, where local control signals can only be applied to a subset of these modules (i.e., active modules)
and the rest do not admit any control signals (i.e., passive modules). Specifically, based on a set-theoretic
model reference adaptive control approach predicated on restricted potential functions, we design and
analyze decentralized command following control laws for each active module such that they can effectively
perform their tasks in the presence of unknown physical interconnections between modules and module-
level system uncertainties. The key feature of our framework allows the system error trajectories of the
active modules to be contained within a-priori, user-defined compact sets. Thus, they are guaranteed to
achieve strict performance guarantees, where this is of paramount importance for practical applications. In
addition to our theoretical findings and research contributions, the efficacy of the proposed decentralized

adaptive control architecture is demonstrated in an illustrative numerical example.

7.1 Introduction

The design and implementation of decentralized architectures for controlling complex large-scale
systems is a nontrivial control engineering task involving the consideration of components interacting with
the physical processes to be controlled. Specifically, large-scale systems are characterized by a large number
of highly-coupled heterogeneous components exchanging matter, energy, or information and have become
ubiquitous given the recent advances in embedded sensor and computation technologies. Examples of such
systems include but are not limited to network systems, power systems, communication systems, process

control systems, water systems, highway systems, and air traffic control systems (see, for example, [59, 60]

I'This chapter is previously published in [134]. Permission is included in Appendix B.
2This chapter is a by-product of consulting work. Permission is included in Appendix B.
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and references therein). An important class of large-scale systems is modular systems in which there exists
a physical interconnection between modules. A major challenge in the control of modular systems is associ-
ated with the unknown physical interconnections between modules and module-level system uncertainties.

Although fixed-gain robust control design approaches (see, for example, [1, 135]) can be used
to handle the unknown physical interconnections and module-level system uncertainties, they require the
knowledge of bounds resulting from uncertainty parameterizations. However, characterization of these
bounds is not a trivial task especially for complex large-scale systems due to practical constraints involving
time and cost. To this end, the authors of [61-72] propose notable decentralized, partially decentralized, or
distributed adaptive control approaches, where their approaches have the ability to learn and suppress the
effect of such uncertainties, require less modeling information than do fixed-gain robust control approaches,
and significantly reduce the design and implementation of control architectures. Therefore, the adaptive na-
ture of these approaches provides an effective control design methodology for large-scale modular systems.

More specifically, the authors of [61-66] consider decentralized adaptive control approaches, where
no communication (i.e., information exchange) is allowed between the modules. The authors of [67-71]
consider partially decentralized adaptive control approaches in that they require every local controller to
access the desired closed-loop system trajectories of all other modules. This may not be feasible in practice
for highly-complex large-scale modular systems. Nevertheless, these approaches guarantee stability of
the overall large-scale modular system without necessarily making global assumptions. Departing from
these results, the authors of [72] proposed a distributed adaptive control approach with strict performance
guarantees, where only neighboring modules are allowed to communicate with each other. While this
approach does not require any global communication, it still requires modules to communicate with each
other through a graph topology and this may not always be feasible for certain practical applications of
large-scale modular systems. Another approach that gives strict performance guarantees is [73], where the
authors utilize an adaptive backstepping scheme.

It is of practical importance to note that the approaches documented in [61-73] require all modules
of a large-scale system to be controlled. However, this may not be possible especially for highly complex
large-scale modular systems. For example, there may exist a specific subset of modules in practice that
cannot be accessed or some of the modules can be subject to actuator failures in that it may not be possible
to drive such modules through control signals. In this case, the set of modules that cannot be driven by

control signals affect the others as unmodeled dynamics, which often have asymptotically stable unperturbed
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dynamics. Although there are a few approaches that consider decentralized adaptive control of large-scale
modular systems in the presence of unmodeled dynamics [136—139], these approaches do not necessarily
achieve strict performance guarantees on the overall closed-loop large-scale system. Throughout this paper,
we use the phrase active modules for the modules subject to local control signals and the phrase passive
modules for the modules that do not admit any control signals; therefore, they act as unmodeled dynamics
to the active modules in the sense of [136-139].

The overarching contribution of this paper is a new decentralized adaptive control architecture for
large-scale active-passive modular systems. Specifically, based on a set-theoretic adaptive control approach
predicated on restricted potential functions, we design and analyze decentralized command following control
laws for each active module such that they can effectively perform their tasks in the presence of unknown
physical interconnections between modules and module-level system uncertainties. The key feature of our
framework allows the system error trajectories of the active modules to be contained within a-priori, user-
defined compact sets. Thus, they are guaranteed to achieve strict performance guarantees, where this is
of paramount importance for practical applications. In addition to our theoretical findings and research
contributions, the efficacy of the proposed decentralized adaptive control architecture is also demonstrated
in an illustrative numerical example. Finally, a preliminary version of this paper appeared in [140]. The
present paper considerably goes beyond this version by providing comprehensive proofs of the main results,
a new and more challenging illustrative numerical example, and additional motivation and remarks on the
proposed decentralized adaptive control architecture for large-scale active-passive modular systems.

The notation used in this paper is fairly standard. Specifically, R denotes the set of real numbers,
R™ denotes the set of n x 1 real column vectors, R"*™ denotes the set of n x m real matrices, R (resp.
R.) denotes the set of positive (resp. non-negative-definite) real numbers, R (resp. @T") denotes
the set of n X n positive-definite (resp. non-negative-definite) real matrices, D"*" denotes the set of n x n

real matrices with diagonal scalar entries, (-)T denotes transpose, (-)~! denotes inverse, tr(-) denotes the

trace operator, H ‘2 denotes the Euclidian norm, H }F denotes the Frobenius matrix norm, “£” denotes
equality by definition, and Api,(A) (resp. Amax(A)) denotes the minimum (resp. maximum) eigenvalue of
the Hermitian matrix A.

The organization of this paper is as follows. Section 7.2 introduces the problem formulation of
the large-scale active-passive modular systems. Section 7.3 presents the proposed decentralized adaptive

control, while Section 7.4 provides the stability and performance guarantees of the proposed controller.
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An illustrative numerical example is provided in Section 7.5 to demonstrate the efficacy of the proposed
approach and conclusions are summarized in Section 7.6. It should be also noted for completeness that
a set-theoretic architecture is utilized in the previous work by the authors [72, 74]. However, the results
of [72] is in the context of distributed adaptive control; hence, the considered modules communicate with
each other through a graph topology as discussed above. Moreover, [72] does not consider the presence of
passive modules, which do exist in practice as also discussed above. Finally, the results of [74] is based on

the results in [72] and it is not at all in the context of large-scale active-passive modular systems.

7.2 Problem Formulation

The problem formulation for the decentralized control of large-scale active-passive modular systems
is introduced in this section. To this end, we start with the following necessary definition utilized throughout

this paper”.

Definition 7.2.1 Consider a large-scale modular system with N modules. Let N < N of the N modules be
subject to control signals and let the rest Np < N of the N modules be not subject to any control signal,
where N = Np + Np. We then refer to the Ny modules that are subject to control signals as active modules

and the rest Np of the N modules as passive modules.

We next consider the uncertain large-scale active-passive modular system G comprised of Ny < N

active modules given by

Gat &i(t) = Amxi(t) +BilAui(r) + 04(x(1)) + Bi(z(1))],  xi(0) = xio, (7.1)

fori=1,...,Na, and Np < N passive modules given by

Gp,: zi(t) = Fazi(t)+Gidi(x(r)), zi(0)=zo, (7.2)

fori=1,...,Np. In (7.1), x;(t) € R is the state vector of the active modules available for feedback, u;(t) €

Xn;

R™ is the control signal applied to the active modules, A; € R"*" is an unknown system matrix and B; €

R"*™i g a known control input matrix such that the pair (A;,B;) is controllable, and A; € ]R'fxm" ) mimi

3Note that Definition 7.2.1 is consistent with the active-passive notion introduced in [141-146], where it is not related with the
passivity theory appearing in the control systems literature (see, for example, [147]).
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is an unknown control effectiveness matrix with positive entries on its diagonal. In addition, z;(t) € R is
the state vector of the passive modules and F; € RP\*Pi and G; € RPi*% are unknown matrices appearing
in (7.2). Furthermore, @; : R, x R™*™+--#y s R™M represents the unknown physical interconnections
between active modules, B; : R, x RP1TP2T+PNp _y R™ represents the effect on the active modules from
their unknown physical interconnections with the passive modules, and §; : R x R™H2t+vy s R4
represents the effect on the passive modules from their unknown physical interconnections with the active

modules. Finally, note that x(t) £ [x{ (¢),x] (¢),...,xy, ()] and z(1) £ [2] (1), 23 (1), ., 25, (1)] ™.

Remark 7.2.1 To elucidate the large-scale active-passive modular system setup introduced in (7.1) and
(7.2), consider the example in Figure 7.1, which depicts a cutout of an aircraft with multiple controllable
flap surfaces along its wing allowing for flexible wing shaping [148—152]. In this representative example,
imagine that all flaps are connected through a flexible membrane and that a fault has occurred in flaps 3,
4, and 6, such that they no longer receive a control input, but still affect flaps 1, 2, and 5. In this case,
flaps 1, 2, and 5 are considered as active modules, Ga,, i = 1,2,3, subject to decentralized controllers given
by Ca,, i = 1,2,3. The active modules are interconnected with two passive modules Gp,, i = 1,2 (flaps 3,
4, and 6, where flaps 3 and 4 are combined as Gp,, such that it is augmented in the sense that it consists
of two separate interconnected passive modules grouped as one passive module). In this setup, the active
module G, (flap 1) is interconnected with the active module Ga, (flap 2); hence, it only has the unknown
interconnection depicted by oy (x). The active module G, (flap 2) is interconnected with both the active
module Ga, (flap 1) and the augmented passive module Gp,; hence, it has the unknown interconnections
depicted by o (x) and B (z). The same arguments can be made for the other modules used in this example.
For another representative example, see the mechanical system setup utilized in the illustrative numerical

example of Section 7.5.

Remark 7.2.2 The large-scale active-passive modular system setup introduced in (7.1) and (7.2) captures a
large-scale system G subject to unmodeled dynamics in the sense of [136—139], as discussed earlier. To see
this, consider Figure 7.2 as an example, where each active module is interconnected with a passive module

representing unmodeled dynamics for these active modules.

Consistent with the decentralized adaptive control literature (see, for example, [61-63, 66, 68]), we
make the following assumption for the large-scale active-passive modular system setup introduced in (7.1)

and (7.2).
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Figure 7.1: A large-scale modular system representation of wing shaping aircraft in Remark 7.2.1, where
thick lines represent unknown physical interconnections between the modules.

Figure 7.2: A large-scale modular system in Remark 7.2.2 with active modules (blue boxes) and passive
modules (yellow boxes), where thick lines represent unknown physical interconnections between the
modules.
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Assumption 7.2.1 The nonlinear functions o;, 3, and &; appearing in (7.1) and (7.2) satisfy

Na

los(x@)ll, < o Y |, o >0, (7.3)
=1
Np

1Bi(z@)ll, < ﬁi*Z%\|Zj(f)Hy B >0, (7.4)
j=
Na

18, < & Y [|x@],, & >0, (7.5)
=1

respectively, where o, B, and &;° denote unknown constants.

For the feasibility of a decentralized control solution for the large-scale active-passive modular

system setup introduced in (7.1) and (7.2), the following assumption is necessary and standard.

Assumption 7.2.2 The system matrices of the passive modules, F;, which appear in the dynamics given by

(7.2), are Hurwitz.

Remark 7.2.3 As a direct consequence of Assumption 7.2.2, there exist constants &; and &y; such that
2Ol < Sut&aill&i(x(0))]l,- (7.6)

This can be seen by rewriting the passive module dynamics given by (7.2) as

t
w0 = g+ / UG8 (x(7))d. (7.7)
0

It now follows from [80] that z;(t) can be bounded by

t
ol < e ool [ e Gl 182 o

o K-l. G
< wue ™ faoll, + DG G 18 (), 718)

1)

where k1; > 0 and 0 < ky; < —p(F;), p(F;) = max{Re A; : A; € spec(F;)}. Noting that for an arbitrary

vector v(t),

[v(t) || = sup, |v(z)| and ||v(t)||. < ||v(¢)]|, are true, we can further bound (7.8) by

e Ki; ||Gi
Ol < wue ™ ol + e g o).
1

IN

i K1i G,’
ezl + G 5 a0, 19)

)
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—Ko;

Finally, since the exponentially decaying function e * has a maximum of 1 at t = 0, we can let &;; &

K1 ||ziol|, and &y =S %?’HF and arrive at the result in (7.6).
1

To capture a desired closed-loop dynamical system performance for each active module, consider

the reference model for active modules given by
Oaq s %i(t) = Auxi(t) +Brici(t),  xi(0) = xuio, (7.10)

fori=1,...,Nu, where x;;(t) € R" is the reference state vector, ¢;(¢) € R™ is a given uniformly continuous

*mi is the command

bounded command, A;; € R"%*" is the Hurwitz reference model matrix, and B,; € R"
input matrix. Since ¢;(¢) is bounded, it follows that ||x;;(r)||, < x; for i = 1,...,Na, with x; being the upper
bound for each active module reference model. We now make the following classical assumption in adaptive

control literature (see, for example, [6]).

Assumption 7.2.3 There exist gain matrices K; € R™*" and Ky; € R™>™ such that Ay; = A; — BiKy; and

Br,’ = B,‘Kz,' hold.
Note that (7.1) can now be rewritten using Assumption 7.2.3 as

X,'(t) = Ar,-xi(t) —i—Bric,-(t) +B,‘Ai[l/£i(l) +VVZ'TG,'(X,'(I),C,'(I))] +B,-[Ot,-(x(t)) +ﬁi(Z(t))], (7.11)

where W; £ [Ai_lKli, —Al-_lei]T € RU+mi)>mi is an unknown weight matrix and o;(x;(¢), ci(t)) £ EAGE

1

c,T(t)] € R"*™i is a known basis function. In addition, the error dynamics for the active modules follow

from (7.10) and (7.11) as

éit) = Aueit) +BiNi[ui(t) + W 0;(xi(1), ¢i(t))] + Bi[og(x(1)) + Bi(z(1))], (7.12)

where ¢;(t) £ x;(t) — x.;(¢) is the system error for the active modules.

The decentralized control problem considered in this paper is now stated as follows. Subject to
Assumptions 7.2.1, 7.2.2, and 7.2.3, consider the large-scale modular system given by (7.1) and (7.2) with
Ny active modules and Np passive modules. We aim at designing local control signals for each active module
such that the active module trajectories follow reference model trajectories, the system error trajectories are

restricted to a-priori, user-defined compact sets enforcing strict performance guarantees, and stability of
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the overall closed-loop large-scale system involving not only active modules but also passive modules is
achieved. For this purpose, the next section introduces the proposed set-theoretic decentralized adaptive

control architecture.

7.3 Decentralized Adaptive Control for Active-Passive Modular Systems

To address command following in the presence of unknown physical interconnections between
active and passive modules and module-level system uncertainties, this section proposes a set-theoretic
decentralized control architecture for the modular system presented in Section 7.2. To this end, we start

with the following necessary definitions.

Definition 7.3.1 Consider a convex hypercube in the form
Qo= {6 € R*: (05 < B0: < 60 )iz12,..5} » (7.13)

where Qg € R*, and 96?“ and 6y;** respectively represent the minimum and maximum bounds for the ih

component of the s-dimensional parameter vector 6y (we set 9(‘)“?“ = —0p;** for the results of this paper

without loss of generality). Furthermore, for a sufficiently small positive constant Vo, consider another

hypercube in the form
Qu = {6 € R’ : (657" + Vo < 60; < 63 —V0)i=12,...5} (7.14)

where Q, C Q. The projection operator Proj : R®* x R®* — R® is then defined component-wise by

omax_gy; .
(070) Vi, 1if Boi > 051 — vo and y; > 0,

Vo

Proj(8,y) = (W) vi, if Opi < 66?1“4— Vo and y; < 0,

Vo

Vi otherwise,
where y € R’.

Remark 7.3.1 As it is known, it follows from Definition 7.3.1 that

(80— 65)" (Proj(6o,y) —y) <0, (7.15)

180

www.manaraa.com



holds for 6y € Qo andy € R* [6]. Throughout the paper, we also use the generalization of (7.15) to matrices
as Proj,(0,Y) = (Proj(col; (®),col; (Y)), . . ., Proj(col,,(®), col,(Y))), where ® € R Y € R"™", and

col;(+) denotes the i-th column operator. In this case, for a given matrix ®*,

(g E

tr [(@ — ©")T(Proj, (0,Y) Y)] - [coli(@) — ©")T(Proj(coli(®),coli(¥)) —coly(¥))| <0 (7.16)

i=1

follows as a consequence of (7.15).

Definition 7.3.2 For a given vector y € R®, the tangent hyperbolic function is defined by

tanh(yT) £ [tanh(y(1)),...,tanh(y(s))] € R°. (7.17)

Definition 7.3.3 Let ||y||z = \/Y"Hy be a weighted Euclidean norm, where y € R® is a real column vector
and H € R*. We define ¢(||y||u), ¢ : R® = R, to be a restricted potential function (barrier Lyapnunov

function) defined on the set

Dy = {y: y[la € [078)}7 (7.18)

with € € Ry being an a priori, user-defined constant, if the following statements hold [74]:

o If[lylla =0, then ¢(|ly|lu) = 0.

Ify € De and ||y||ln # 0, then ¢([y[|ln) > 0.

Ilylln — & then ¢([|y[lu) — o.

O(|lyllu) is continuously differentiable on De.

Ify € De, then dallylln) > O, where go([yllw) < L0l

Iy € De, then 2¢q(||yllu) [¥ll5 — ¢ (Iyllu) > 0.

Remark 7.3.2 As noted in [74], Definition 7.3.3 generalizes the definition of the restricted potential func-
tions (barrier Lyaponuv functions) used by the authors of [72, 153—157]. For example, a candidate restricted

potential function satisfying the conditions of Definition 7.3.3 has the form

Iy IIF;
e—|lyllu’

o(llyllu) y € De. (7.19)
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To achieve command following in the presence of unknown physical interconnections between ac-
tive and passive modules and module-level system uncertainties, we propose the set-theoretic decentralized

adaptive control architecture constructed using restricted potential functions for the active modules G4, as

A

Cni wlt) = —W)Gi0u(r),cilt) — i(e)tanh (9a (lei(o)ll) el ())PB) —Oi(0)BL Pei(r), (7.20)

where W;(¢) € R™*™ is an estimate of W; satisfying the projection operator-based weight update law

A

VVI(Z) = ’}/iPI'ij [Vt]l([% ¢d (Hel(t)HP,) Gi(xi(t)7ci(t))e;r(t)PiBi] ’ ﬁll(()) = ﬁ/i()? (7.21)

which also includes restricted potential functions, where % € R is the learning rate gain and @y ([|e;(7)] )
can be viewed as an error dependent learning rate. Moreover, ¥;(¢) and éi(t) are projection operator-based

adaptive terms satisfying

) = pProj [Yi(0), da (llei(r) 1) ef (1)PBitanh (u (llei0)]| ) eF (OPB)]. (7.22)
%(0):%0€R+7
6i(1) = miProj [6,0), 6a (lleit)llp) [|BTRei(r) ]3] (7.23)

éi(o) = éiO eR,,

with i; € R, and 1; € R, being design parameters. Note that since §;(0) € R, and 6;(0) € R, then
Wi(r) € Ry and 6;(1) € R, respectively hold. In (7.21), (7.22), and (7.23), P; € R’i*" is a solution of the

Lyapunov equation

0=A}P +PA;+R;, (7.24)

with R; € R’}r"x"" . Since A;; is Hurwitz, note that from the converse Lyapunov theory [80] that there exists
a unique P, satisfying (7.24) for a given R;. Finally, we select the projection bounds for (7.21), (7.22), and

(7.23) to respectively satisfy

A

Wi)lik| < Wimaxjiskotyn  Ji=looniand ki =1,...,m, (7.25)
0 < Wi(r) < wipii, Wiélmfé/\i)’ p1i>1, (7.26)
. EXLNA
0< 6:(1) < 0y, 62 2212 5. .51 7.27
> z() > zp217 i za'min(A[)? p21 P ( )
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where Wi,ma& jit(k—1n € Ry denotes element-wise projection bounds, y;py; and 6;py; respectively denote
the projection bounds for the adaptive terms given by (7.22) and (7.23) with py; and p,; being free design

variables and é,' € Ry and &J; € R, to be defined later, and /; € R is another free design variable®.

7.4 Stability and Performance Guarantees

In this section, we present the stability analysis and establish strict performance guarantees of the
set-theoretic decentralized control architecture proposed in Section 7.3. For this purpose, we first state the

system error dynamics for the active modules Ga, as

éi(t) = Anei(t) —BiN; [WGT(I)Gi(xi(f)aCi(f)) + W;(t)tanh (¢q (llei(1)]1) €] (t)P:B;)

+éi(t)B;'FPiei(t)} +Bi (05(x(2)) + Bi(2(2))), (7.28)

as a consequence of using (7.20) in (7.12), where W;(t) = W;i(t) — W;. We then define x,, = max; {x}},
Wit) £ Wit) — ;. 6i(t) £ 6,(t) — 6;, &5 £ o + B Npmax; {ﬁzjaf}’ and & £ B Np -max;; {&1;} +&5iNa

“Xr,..- The next theorem presents the main result of this section.

Theorem 7.4.1 Consider the uncertain large-scale modular system G comprised of interconnected active
modules, Gu,, and passive modules, Gp,, described by (7.1) and (7.2), respectively, subject to Assumptions
7.2.1, 7.2.2, and 7.2.3. Additionally, consider the active module reference models given by (7.10) and
control laws given by (7.20), along with the update laws (7.21), (7.22), and (7.23). If ”eiOHP,- < &, then
the solution (e;(t),W;(t), Wi(t), 0:(t),zi(t)) of the closed-loop dynamical large-scale modular system G is
bounded, where the active module system errors strictly satisfy the a-priori given, user-defined worst-case

performance bounds given by

lei@)llp < & teRy. (7.29)

Proof. To show boundedness of the closed-loop dynamics of the active modules Ga,, consider the

energy function V; : D, X RAm(W) 5 Reim(¥) 5 Reim(8) _ R, given by

i\ T y 1
i) = ¢ (llei®)llp) +¥ 'tr (W(r)A,?) (W,-@)A;)
+ (1 (1) + 171 67(1)) Amin(A), (7.30)

4As standard in the adaptive control literature, one can choose all projection bounds to be sufficiently large without requiring
strict knowledge of the bounds on the unknown parameters.

Vi (ei(), Wie), Wi(t),
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where D,, £ {ei(t) : |lei(t)||p < &} and dim(W;), dim({;), and dim(6;) denote the dimensions of W;, ¥,

and 6;, respectively. Note that V;(0,0,0,0) = 0, V;(e;, W;, ¥, 6;) > 0 for all (e;, W;, ¥, ;) # (0,0,0,0), and

dg (lei®)lln) a9 (le)llp) dlleit)lI7
dr - dlely

20q (|lei(t)ll5,) e (1)Piei(1). (7.31)

Now, differentiating (7.30) and using (7.21) yields

ACONIORTOR-10)
=200 (Jlei(t)]1p) ] ()P0 + 207”0 WTOW(0)A 42 (11 G 0)95(0) + 17 () Bi(0)) Ain (1)
= —0u (lex(t) 1) € (1)Rex(r) = 2u (lex(t) ) € () PBW (1)0i(x(0). (1))
=201(0)6u (lei(0) ) eF (1) PBiAtanh (9u ([lex(r) ) € (1))
~28,(6)0u (les(t) ) eF () PBABTPrei(r) +29a (lex(r) ) €] (1)PB (04 (x(1)) + Bi(2(1))
200 W, (0)Proj [Wi(0), 9u (ller(0)]1p) orlaa(r), ci(0))e] (1) B A
2 () (0) 1 8(08,0)) Amin ()
< —0u (lleit) 1) €] ()Riei(0) = 2010060 (lles(0) ) € (1)PBitanh (9 (lex(r) ) €] (1)P.B,)
~204(1)9u (llei(t) ) ] () RBABT Prei(r) +20u (llei(0)] ) e (1) PiB (aux(1)) + Bi((1)))

+2 (ufl OLAGES éiéi(t)> Aamin (A7) (7.32)
As a direct consequence of the projection operator-based update laws for ;(r) and 6;(¢), the inequalities

~2i(1)9a (Ilei(1) |1 ,) e (1) PBiAstanh (9a ([lei(1)l) ef (1) P:B;)
—=295(1)¢a (llei(t)[|) €7 (¢) PiBidamin (Ai)tanh (9a (|lei(1) || ) ] (1) PiBi) (7.33)

and
~26,(1)9q ([lei(1)llp) e () PBABI Pre(t) < —20:(1)fa (|lei(t) ) Amin(A) || BFPei(2)|[3, (7.34)

hold. Now, we can write (7.32) with (7.33) and (7.34) as
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Vi (esr), W), (1), 6,(1))
< —a (lei(t) 1) Amin (R les(0) 13+ 290 (lles(r) 1 ) 1B Pei()] s x(1)) + Bi(z(e))
—~25(1)6u (llei(0)11 ) €T (1) PiBi2min (Av)tanh (94 (|l ei(r) ] ) e (6)P:B;)
—26,(1)0 (llei() 1) Amin (AD) 1B Pei(0)[3+2 (7 W) 9i(0) + 17 6(0)8,(1) ) Ain (). (7.35)

Next, note that

264 (ller0) 1) ||BTPres )] lea(x(0)) + Biz(0)
< 29u (o)1) BT Pes(0) |, [lloaCe) s + 1B )1 |

<204 (les)l) 8P| X o)+ X Hz,-<t)Hz]

<294 (Jei(0) ) |BTPes(0)] O‘Ekﬁlej(f)Herﬁi*i<51j+52; PR Hz)]

Jj=1

- "
<29 (llei(t)llp,) || Bi Prei(1) |, Bi*NPman {&}+& Z ||XJ(t)H2]

Na

< 20a (lei(®)11) |[B7 Prei (1) | [3, Nemax; (&1} +&3; )., ([les ()], + ”xrj(t)Hz)]

j=1

Na
<204 (llei(t)|l5,) ||B} Pei(t) ||, Bi*NPman {817} + &iNamax; {xi} + &5, ; e (2) H2]

=204 (lei(t) 1) ||BT Pei(t)]], & + 9a (llei(t) ]l ) éz,Zz\wTPe,llzlle, )|,- (7.36)
=]

In addition, using Young’s inequality [14] for the second term in (7.36) gives

Na
0a (llei(®)llp) & Y 2| BT Pei(t) ||, lles )],

=1
< 0a(le0l) & X (418 el + 1 e

)3

¢d (Hel HP 521 Z ”

= 0 (Ilei(1)ll,) ExNali | BFPei0)||5 + (7.37)
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Now, using (7.36) with (7.37) in (7.35) yields

Vi (ei(t). Wilt), Wi(1), B1(1))

< —0a (lle(t)1,) Amin (R) lles(0) 15 + 290 (llei(t) 1 5,) || BT Prei(0) ], &
v (le01) imat a7+ U B o

~20(6)9a (llei(t) 1) €7 () PeBiAamin (A >tanh(¢d(uel<>up> Y(1)PB)

~26,(1)9a (llei(1) 1) Amin(A7) || BY Pres (1 H2+2<u, %()W)+n;léi<>é(>)ﬂmm( i)

:—¢d<ue,-<r>ug)lmm<&>He,-<r>u§+‘bd(”e’ i) 2’2\\ Dl

+2Amin (A ‘l’z[H%(Hez 0)p,) B Pei(t) Hz— d(Hei( )|, ei (t)P:Bitanh (¢q ([lei(t)|l5,)
PB:)] + 20 i [Wi() — it (llei(t) |l ) ef PiBitanh (@a ([lei(t)]]) ef PiB:)] Amin(As)

+on; ! [é =10 (lei()llg) || BT Piel (0)[] Amin (A0). (7.38)

Owing to the nature of using the tangent hyperbolic function,
|00 (llei(t)l ) Bi Piei(t)]|, — @a (llei(r)l ) ei (r)PiBitanh (9 (llei(r) ) ef (1)PiB:) < Lis  (7.39)
holds [158], where £; = 0.2785 for all i = 1,2,...,Ns. Using this along with (7.22) and (7.23) in (7.38)

yields

¢a (e Hp &

Na
< =G (ller(t) 1) Ao (R [l (1) 12 + * X e O[3+ 2Amin(A)iLs. - (7.40)

Consider the aggregated energy function for the active modules V(-) = Z?]_,Al V;(+), which results in

Na ei(t)llp Ex N
0 < Lt (lell) AmnR) )5+ ba(lleOl) * 1 eSO+ im0
Na *
= —Z% lei()lp) | Amin(R ZIZJ] t)”§+;2;lqnin(Ai)llli£i~ (7.41)
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Using the inequality Amin(P;) ||ei(t)\|§ <el(t)Pei(t) < Amax(P) ||ei(t) % one can write (7.41) as

V() < *Z(Pd He, ”P) A'max( z) [)me i ; ] Pel +22)vmm
- Z( (i)l + p (¢d(||ei<z>\|,a,)-e,-T<r>Pl~el-<r>—;¢(uei<z>||p,.>))
+ Z 2min (M) Wi L (7.42)
i=1

where p; = m [lmin(R) ZiVAl éf’] Noting from Definition 7.3.3 that @y ([le;(r)| ) ef (t)Pei(r)—

1o (Ilei(0)]l5) >0, (7.42) can be written as

NAl

< -1 pl( (llei)llp) +7% '
+Z <2pi (}/,-ltr (Wi(t)/\?

+2Amin (A7) %Q‘)

S _aminv(') +bmax7 (743)

1

WAL )+ (020 1 62(0) (1) )

/—\
/\
N
e

ST

N—

—
/N

N———
—
/N
13
=
~
>
o=

D) (R 0 620) ammf))

where apin = min; {1p;} and
1
s = N (5 (107 (80 (1 W24 1162) Ai0) + i (A1) - 7

with HW HF <, |§i(t)| <y, and ’é,-(t)’ < 6. From (7.43), V (e(t),W(t), ¥(t), 6(t)) is upper bounded

by Vimax = max {Vo, o } where Vy £ Namax;V (¢;(0),W;(0), %(0), 6;(0)). Now from V(-) = ¥ Vi(-),
it follows that V; (e;(t), Wi(t), %i(t), 0i(t)) < Vmaxs i = 1,2,...,Na, resulting in ¢ (llei(®)lp) < Vimaxs i =
1,2,...,Na, and hence, the strict performance bound on the active modules given by (7.29) is now im-
mediate. Furthermore, V; (e;(t), Wi(t), %i(t), 6;(t)) < Vmax, i = 1,2,...,Na, implies the solution of the
closed-loop active module dynamics, (e;(z),W(t), %(t),6;(¢)), is bounded. As a direct consequence of
the boundedness of e;(¢), i = 1,2,...,Na, it follows that x;(¢), i = 1,2,...,Na, is also bounded. From
Assumption 7.2.2, F;, i = 1,2,...,Np, is Hurwitz, and hence, z;(t), i = 1,2,...,Np, is bounded. The

boundedness of the overall closed-loop large-scale active-passive modular system G is now immediate. W
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Remark 7.4.1 From the solution of the inequality (7.43) given by

V() S Voefamint + % (1 _ efamint) , (745)

Amin

it follows that lim; . V(-) < %. This upper bound on the trajectories of V() as t — oo, can be made
small by increasing the adaptation gains v;, W;, and n;. In addition, it should be noted that the one can
either judiciously choose R; in the Lyapunov equation (7.24) to obtain a different solution P; or use an

optimization process [159] to design P; to improve the enforcing of the performance bound ||e;(t)|| < &

Remark 7.4.2 As a result of the strict performance bound enforced on the active module Gu, error given
by (7.29), it follows as in [74] that upper bounds can be enforced on the state signal x;(t) and the control

signal u;(t). For this purpose, it follows from e;(t) = x;(t) — x(t) that

lxi@)ll, = lleit) +xu(t)
< llei®)lly + [l (@)l
&
S —F :iv 7.46
T (B) (740
and from (7.20) that
lwi®)ll, = [|-W(0)oi(xi(r),ci(r)) — Wi(e)tanh(9a (|lei(1)l| ) ef (1) PiB:) — 6i(1) B} Peei(t) |,
< @ ||oi(xi(1), ci(0)) [l + Wip1i + 6ipai || B B lei (), (7.47)

(
ci(t)) = [xF (). ¢F(0)]", it follows that ||6i(xi(r),ci(e)) 13 = ()3 + i) 13 < (%)l + lle@)lly)

0i(x;(t),ci(t)ll, < ||xi(®) ||, + ||ci(?) |5, such that the bound on u;(t) can be further given as

&

\V4 A'min (Pz)

(@)l < " (Iba(t) Iy + llei(t) 1) + wip1i + 6ipai || BY B[

&; &;
< 0| ——— X+l +wip1i + 0,00 || Bl B ||, ———
( A,mm(Pl) T || ()HQ) 1 2H HF /)vmin(Pi)
8.
= —— (0" +6py]||B'P. (x4 || Pli- 7.48
y—ry (@0 + 6ip2i || B B[ ) + @ (x5 + [[ci () [I,) + wipn (7.48)
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Now, if one is interested in applying a state and/or control dependent function such as a cost function (e.g.,
to minimize drag as in [151, 152]), the corresponding function is bounded owing to the performance bound
enforced by the proposed control design. As an example, consider the cost function for each active module

i given by

5= 5 (0w ORuw()). (1.49)

This can be bounded using (7.46) and (7.48) as follows

Ji

IN

2 (nin(@0) 0+ iR 1)1

IN

ol —8 e ea R [ ——F (0" + 6.0 ||BTP
2<;me<g,>< Mﬂ(ﬁxﬁ)mn(z@)( (o rapa TRl

+o" (x5 + [lei@)]],) + !//ipn> > (7.50)

It is then possible to reduce the bound on the cost function to some extent by the selection of the a-priori,

user-defined performance bound &;.

Remark 7.4.3 In the case one is not interested in command following, but instead the simpler stabilization
case is considered, the control architecture given in Section 7.3 can be modified to stabilize the large-scale
modular system given by (7.1) and (7.2). For this purpose, the control architecture given by (7.20), (7.21),
(7.22), (7.23) is redefined as

wlt) = =W 0p(r) — () tanh(ga ((1) ) 7 (0)PB:) — (1) BT Pi(r) — (1) BT (1), (7.51)
W) = wProj [Wi(0), 6 (o)1) (05T (1) P81 (1.52)
Bile) = wProj [9(0), b (o)) <7 (1) P:Bitanh (9 (o)) 5T (1) PiB:)] (7.53)
6) = miProi [6i(0), 9u (1)) [|BTPa0)]3] (7.54)

with W;(0) = Wi, ¥(0) = @0 € R, and é,-(O) = 0 € R... Then, by considering the energy function

B —

T 1
0) = o (sl +o ' (Woat ) (Won?)
+ (7 () + 171 67(1)) Amin(A), (1.55)
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and following similar steps as the proof of Theorem 7.4.1, one can conclude that the solution (xi(t), Wi(t),
Wi(t),6i(1),2:(t)) of the closed-loop dynamical large-scale modular system G is bounded and the active
module states strictly satisfy the given user-defined worst-case performance bound given by | x;(t)| p < &

teRy.

7.5 Illustrative Numerical Example

In this section, we present a numerical example to illustrate the efficacy of the proposed adaptive
decentralized control architecture. For this purpose, consider the uncertain dynamical large-scale system

depicted in Figure 7.3, which has four active modules and one passive module.

Figure 7.3: An interconnected large-scale system consisting of five carts.

The active modules have the following dynamics

0 o 1 0 0 ||6@ 0
6:(1) (M,-wo)g 0 A//(Ill % 0] _ A/}il

= + (Aui(t) + ai(x(1))) , (7.56)
(1) 0 0 0 1 ||x@ 0
(1) ms 0~k B () i
0:(1) 0 1 0 0 0:(1) 0
el(t> (MIAZ:?O)g 0 kl]{Z;{Z ]l%[l,)l Ol-(t) _]Ml,-l

= + (Ajui(t) + o (x(t)) + Bi(z2(2))), (7.57)
%i(1) 0 0 0 1 xi(1) 0

m ki +k

(1) we o k)l 2 () &

where (7.56) is for active carts i = 1,4 and (7.57) is for active carts i = 2,3. The unknown physical

interconnections between active modules are given by
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o (x(t)) = kl)Q(l) +b)€2(l),
(Xz(x(l)) =kix; (I) + bxy (t),
063(x(t)) = k1X4(l) erfC4(t),

064()6(1‘)) = k1X3(l‘) +b)€3(t),

and the unknown physical interconnections with the passive module are given by

Bi(x(t)) = kazi (1) + bz1 (£), i=2,3.

In addition, the passive module has the following dynamics

0 1 0
a) = |, |a0+] 860, (7.58)
—3 M W

The unknown physical interconnection with the active modules is given by
S (x(1)) = ka (x2(2) +x3(2)) + b (2 (1) +23(1))

For this example, all the cart masses are known as M; = My = 1.0 (kg), My = M3 = 3.0 (kg), and M = 5.0
(kg), each pendulum has a length / = 2 (m) with a mass m = 0.5 (kg), and g =9.81 (m/ s2) is the gravitational
constant. In addition, the spring constant and damper coefficient are unknown but for simulation purposes we
letk; =1.0(N-m 1), k, =2.0(N-m~!),and b= 1.0 (N - sec- m~!), and the unknown control effectiveness
issetas A; =0.5,i=1,2,3,4.

For this example, we set the command signal for each active module to follow as ¢; = sin (),
where @; = 0.1, for i = 1,2,3,4, and we set R; = I, for the proposed adaptive decentralized control for the
active modules. Linear quadratic regulation theory [91] is used to design the nominal feedback control gain
Ky, for i = 1,2,3,4. Through tuning, we select the weighting matrices Q = diag[0.1, 1, 10, 5] to penalize

the states and R = 1 to penalize the control input such that we obtain K;; = [—69. -290 —43 —-73/,

for i=1,4, and K|; = |—120.8 —523 —-7.4 _10_1], for i = 2,3, to design the Hurwitz reference
models Ay;, for i = 1,2,3,4. A pre-filter design is used such that a desired cart position x;(z) is followed.

For this purpose, using C = [0,0, 1,0], the gain K»; is calculated as K»; = —(C(A; — B;Ky;)~'B;)~! = —3.3,
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for i = 1,4 and K,; = —4.4, for i = 2,3. Finally, using the rectangular projection operator, bounds on the
uncertainty are set element-wise to be 5% greater than each uncertain element of W; = [Ai_ 'K, in —A; 1Kz,-] T
for i = 1,2,3,4, and we set 0 < ;(r) < 100 and 0 < 6;(¢) < 100, for i = 1,2,3,4. The learning gains are
set as % =1, for i = 1,2,3,4, and the gains for the robustifying terms are set as y; = 10 and n; = 10, for

i=1,2,3,4.

% §

—c(t)
£ - -Tyi (t) H

2i(t) [m]

fﬂ::(t)»

0:(t) [deg]

: | | | | | | |
0 10 20 30 40 50 60 70 80
t[s]

Figure 7.4: Position tracking and pendulum stabilization of the proposed adaptive decentralized controller
with the performance bound & = 1.0.

Figures 7.4-7.7 show the performance of the interconnected cart system for different performance
bounds ¢&;. Specifically, a performance bound of & = 1.0 is used in Figures 7.4 and 7.5 and then reduced to
€ =0.5in Figures 7.6 and 7.7. It can be seen in Figures 7.4 and 7.6 that all the active modules approximately
follow the reference model trajectory and passive module remains bounded, where the performance is
improved from Figure 7.4 to Figure 7.6 due to the more strictly enforced performance bound g;. Figures 7.5
and 7.7 show the change in the error dependent learning gain 4 (|e;(¢)|| P ) to prevent the violation of & as
the active modules follow the reference model trajectory. This is consistent with the presented theory in that

the violation of g&; is prevented as the error dependent learning gain increases.
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Figure 7.5: Proposed adaptive decentralized control performance, error dependent learning gain, and
weighted norm of the active module system with the performance bound & = 1.0.
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Figure 7.6: Position tracking and pendulum stabilization of the proposed adaptive decentralized controller

with the performance bound & = 0.5.
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Figure 7.7: Proposed adaptive decentralized control performance, error dependent learning gain, and
weighted norm of the active module system with the performance bound & = 0.5.

To investigate the effect of the passive module dynamics on the ability of the active modules to
be properly controlled, while enforcing a performance bound of & = 0.5, the mass of the passive cart is
changed. In particular, Figures 7.8 and 7.9 show the proposed decentralized control performance when
the mass of the passive module is decreased to M = 0.1 (kg), whereas in Figures 7.10 and 7.11, the mass is
increased to M = 25 (kg). As expected by intuition, when the mass of the passive module is small, its motion
is dominantly effected by the movement of the active modules next to it. This can be seen from Figure 7.8
in which the passive module position trajectory closely follows the trajectories of the active modules. On
the other hand, when the mass of the passive module is large as in Figure 7.10, the motion of the passive
module dominates that of the active modules. This is evident from the periodic-like trajectory of the active
modules as they closely track the reference model trajectory, but are effected by the movement of the passive
module. Note that in either case in which the passive module effects the active modules, the performance

bound €& = 0.5 is not violated by the active modules.
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x;(t), z(t) [m]

0i(t) [deg]

t[s]
Figure 7.8: Position tracking and pendulum stabilization of the proposed adaptive decentralized controller
with the mass of the passive module decreased to M = 0.1 (kg).
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Figure 7.9: Proposed adaptive decentralized control performance, error dependent learning gain, and
weighted norm of the active module system with the mass of the passive module decreased to M = 0.1

(kg).
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Figure 7.10: Position tracking and pendulum stabilization of the proposed adaptive decentralized controller
with the mass of the passive module increased to M = 25 (kg).
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Figure 7.11: Proposed adaptive decentralized control performance, error dependent learning gain, and
weighted norm of the active module system with the mass of the passive module increased to M = 25

(kg).
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7.6 Conclusion

In the presence of unknown physical interconnections between active and passive modules and
module-level system uncertainties, the design and implementation of decentralized architectures for the con-
trol of complex large-scale systems is a nontrivial control engineering task. Motivated from this standpoint,
we proposed a new decentralized command following architecture for unknown large-scale active-passive
modular systems and showed stability of the overall closed-loop system using a set-theoretic adaptive
approach predicated on restricted potential functions. The key feature of our methodology was to restrict
the system error trajectories such that they are guaranteed to stay within user-defined limits even in the
presence of the unmodeled dynamics resulting from the passive modules. An illustrative numerical example
demonstrated the efficacy of the proposed framework. Finally, while the results of this paper consider fixed
performance bounds for each active module, this can be generalized to the case in which the performance
bound is time-varying (i.e., £(7)) by using recent results [160] proposed for sole systems. This extension

allows for the initial tracking error e(0) to be large and then converge to a small region defined by £(¢).
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CHAPTER 8: ON ADAPTIVE CONTROL OF UNACTUATED DYNAMICAL SYSTEMS
THROUGH INTERCONNECTIONS WITH STABILITY AND PERFORMANCE
GUARANTEES'?

This paper studies control and performance enforcement for a class of uncertain dynamical systems
consisting of actuated and unactuated portions that are physically interconnected to each other (Figure 8.1).
Performance guarantees are enforced on not only the actuated portion of the interconnected dynamics but
also the unactuated portion via the proposed adaptive control approach, where this is accomplished through
the physical interconnection with the actuated portion of the dynamics. Specifically, the proposed approach
stabilizes the overall interconnected system in the presence of unknown physical interconnections as well
as system uncertainties. For enforcing performance guarantees, a set-theoretic model reference adaptive
control approach is used to restrict the respective system error trajectories of the actuated and unactuated
dynamics inside a-priori, user-defined compact sets. In addition, the proposed approach utilizes linear matrix
inequalities to verify stability of appropriate control parameters as well as the allowable system uncertainties
and unknown physical interconnections. Finally, the efficacy of the proposed approach is demonstrated with

an example.

8.1 Introduction

In this paper, we study a class of dynamical systems that is characterized by two (or more) sets
of uncertain dynamics with an unknown physical interconnection between these dynamics (Figure 8.1). In
particular, only a portion of the resulting interconnected dynamics is actuated (G in Figure 8.1) while the
other portion is unactuated (G, in Figure 8.1). A motivating example for the considered class of dynamical
systems includes slung-load systems (see, for example, [161-168]), where a helicopter is actuated with
a physical connection to the load that is unactuated. In the above work, the dynamics of the load affect

the stability and achievable performance of the overall slung-load system, where the objective is then is to

I'This chapter has been submitted to the IEEE Conference on Decision and Control.
2This chapter is a by-product of consulting work. Permission is included in Appendix B.
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G1 Z(t) N G2 (t) >

Figure 8.1: Block diagram representation of the open-loop interconnected uncertain dynamical system setup
considered in this paper with u(r), z(), and x(¢) respectively denoting the control signal applied to Gy, the
state vector of G, and the state vector of G».

design control laws for load damping such that the slung-load system remains stable and has some degree of
desirable performance. However, no performance guarantees are made for the load itself, which is desirable
in safety-critical scenarios such as precision load placement or navigation through densely obstructed areas.

The system behavior discussed above also falls under a class of underactuated mechanical systems,
which are defined as systems with more degrees of freedom than there are actuators. A vast amount of
literature already exists considering the control of underactuated mechanical systems (see, for example,
[169-181], and references therein as well as [182—184] that use the terminology of super-articulated me-
chanical systems). In addition to the motivating example of slung-load systems, underactuated mechanical
systems include unactuated fuel slosh dynamics in spacecraft [175, 176], robot manipulators including
flexible joints and flexible links [172, 174, 177, 179, 182, 185], multibody mobile robots (i.e., car with
trailer) [169, 186], inverted pendulums on carts [182, 187], bipedal walking [180, 181], and crane systems
[188, 189]. Different control approaches used in these works include feedback linearization [174—-176, 179],
open-loop vibrational control of unactuated joints [177], and backstepping [182, 185, 186]. To handle
uncertainties, several adaptive control methods have been studied [187, 189—194].

The authors of [190] consider the fact that uncertainties in underactuated systems do not satisfy
a linear-in-parameter property. By using an extended dynamic model with a normal form augmentation,
the parameter linearity is recovered such that a parameter adaptive control law can then be implemented
to suppress the effect of the system uncertainties. While an important step, only stabilization of the en-
tire underactuated system is considered without any consideration for the performance of the unactuated
dynamics. Similarly, [192] proposes an adaptive control for underactuated systems that avoids the linear-in-
parameter property by not using detailed model information, but instead using estimated model parameters.
The resulting control allows for the actuated degrees of freedom to track desired trajectories, while the
unactuated dynamics are considered as unmodeled dynamics. It is also shown in [192] that performance

bounds can be computed and improved by increasing adaptation rate; however, no guarantees can be made to

199

www.manaraa.com



enforce this without judiciously choosing the adaptation rate. Performance bounds are also only considered
for the actuated degrees of freedom.

The authors in [191] design an adaptive variable structure set-point control law to drive all states
of an underactuated robot system to desired values in the presence of parameterized uncertainties, where
it is discussed that system performance can be improved by proper selection of controller gains. In [187],
the authors propose an adaptive control law using fuzzy logic for an inverted pendulum set-up. Similarly,
an adaptive fuzzy logic based control law is proposed in [193] utilizing a hierarchical structure of sliding
surfaces to drive tracking errors to zero. Furthermore, performance bounds on the tracking error are
computed (but not enforced). The authors of [194] propose a combined adaptive supervisory control along
with a Lyapunov-based tracking control law to obtain a uniform ultimate bound result on the tracking error,
where this bound can be made arbitrarily small through selection of the control parameters. In [188] and an
adaptive extension [189], a form of performance guarantees are considered. In particular, both consider an
overhead crane system where a motion planning method is used to keep the swing angle of the load attached
to the crane within certain constraints; however, they only consider stabilization of the attached load where
our approach allows for command following of the unactuated dynamics (i.e., load in the sense of the crane
system). Moreover, our approach is proposed here in a more general form such that it could be applied to
other underactuated systems, while [188, 189] are specific for the crane system considered.

The contribution of this paper is an adaptive control architecture for uncertain dynamical systems
subject to interconnected actuated and unactuated dynamics with performance guarantees enforced to both
dynamics. The control and performance enforcement of the unactuated dynamics is accomplished through
the physical interconnection with the actuated dynamics, where the proposed control is applied to stabilize
the overall interconnected system in the presence of unknown physical interconnections as well as uncer-
tainties in both the actuated and unactuated dynamics. The performance guarantees are enforced using a
set-theoretic model reference adaptive control approach? such that the respective system error trajectories of
the actuated and unactuated dynamics are restricted to stay inside user-defined compact sets. In addition, the
proposed approach uses linear matrix inequalities (LMIs) to verify stability of appropriate control parameters
as well as the allowable system uncertainties and unknown physical interconnections. An example is

included to demonstrate the efficacy of the proposed approach.

3Note that a set-theoretic adaptive control architecture is utilized in the prior work of the authors [72, 74, 134, 140, 195];
however, they are not applicable as-they-are to the problem considered in this paper (see Section 8.2).
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8.2 Problem Formulation

We start with introducing the class of interconnected uncertain dynamical systems considered in

this paper*
x(t) = Ax(t)+BUz(t) +Wx(r)], x(0) = xo, (8.1)
dr) = Fa(t) +Glu(t) +Hx(t) + W, 2(1)],  2(0) =z, (8.2)
where (8.1) is the unactuated portion of the interconnected system and (8.2) is the actuated portion. In
(8.1) and (8.2), x(r) € R" is the state vector of the unactuated dynamics available for feedback z(r) € R?
is the state vector of the actuated dynamics available for feedback, and u(r) € RY is the control signal
applied to the actuated dynamics. In addition, A € R™*" and B € R are a known system matrix and a
known input matrix, respectively, for the unactuated dynamics such that the pair (A, B) is controllable, and
F € RP*P and G € RP*4 are a known system matrix and a known control input matrix, respectively, for
the actuated dynamics such that the pair (F,G) is controllable. Furthermore, W, € R"*" and W, € RP*7 are
unknown weight matrices respectively representing uncertainty in the unactuated and actuated dynamics, J €
R™*P represents the effect on the unactuated dynamics from the unknown physical interconnection with the

gxn

actuated dynamics, and H € R?*" represents the effect on the actuated dynamics from the unknown physical

interconnection with the unactuated dynamics, where we consider these unknown physical interconnections

to be parameterized as

H = Hy+H, (8.3)
J = Jo+Ja, (8.4)

with Hy € R?7*" and Jy € R™*? consisting of known coefficients of the physical interconnection and Hy €

R?*™ and Jy € R™*P consisting of the unknown coefficients of the physical interconnection.

Remark 8.2.1 Under nominal conditions (i.e., JA =0, Hy =0, W, =0, W, =0), (8.1) and (8.2) reduce to
x(r) = Ax(r)+BJoz(t), (8.5)
z2(t) = Fz(t)+Glu(t) + Hox(t)). (8.6)

In this form, a possible selection of the control signal is u(t) = —K,z(t) + Kou, (t) — Hox(t ), where K, € R9*P

is designed such that F — GK; is Hurwitz, K, € R?”™, and u(t) € R™ is an additional control signal to be

4To elucidate the interconnected uncertain dynamical system setup presented in (8.1) and (8.2), consider the open-loop block
diagram in Figure 8.1. In this block diagram, G| represents the actuated dynamics receiving a control signal u(z) as well as the
unactuated state signal x(¢) through physical interconnection with G, where G, represents the unactuated dynamics receiving the
actuated state signal z(¢) through the physical interconnection.
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applied to the unactuated dynamics. With this control signal, one can write (8.5) and (8.6) equivalently as

x(t) = Ax(r)+Bv(r), (8.7)
z2(t) = (F—GKy)z(t) + GKyuy (1), (8.8)
v(t) = Joz(1). (8.9)

By choosing (the pre-filter gain) K> as —Jo(F — GK)~'GK, = I, one can design the remaining control

signal uy(t), for example, to stabilize (8.7). To see this, consider an equivalent form of (8.7) given by
x(t) = Ax(t)+Bui(t) +Bv(t) —u(1)). (8.10)

If K is selected such that the system in (8.8) and (8.9) is sufficiently fast and since —Jo(F —GK,)~'GK, =1,
then one would expect uy(t) = —Lix(t), L € R™", with A — BL; being Hurwitz to stabilize (8.10), where

in this case lim,_.(v(t) —u; (t)) = 0 can be concluded".

Remark 8.2.2 The nominal case discussed in Remark 8.2.1 simplifies the problem such that one can also

augment the dynamics in (8.7)-(8.9) and write them as

(1) A Bl x(1) 0
= + i (). 8.11)
z(t) 0 F-GK;| |z() GK,

As already discussed, this is an easier problem to solve using linear control theory. However, due to the
the presence of uncertainties in both the actuated and unactuated dynamics and the unknown physical
interconnections in the considered dynamics given by (8.1) and (8.2), the control problem becomes more

complex. To see this, we similarly augment the dynamics in (8.1) and (8.2) yielding

x(1) A Bl| |*(1) 0 B
= - (u(t) +Hax(t) +Wlz() + | | (Jaz(t) +Wix(r)). (8.12)
(1) GHy, F | |z(t) G 0

From (8.12), the challenge of this “augment the dynamics” approach is that the uncertainty in the term
“Jaz(t) + WIx(t)” is unmatched, meaning that there is no access to the control channel to suppress this

uncertainty with standard model reference adaptive control architectures. While there are some approaches

SWe refer to Section 8.4 and specifically Remark 8.4.1 for the analytical condition predicated on LMIs to verify overall closed-
loop system stability based on the aforementioned design gain.
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to handle unmatched uncertainties in the context of model reference adaptive control (see, for example,

[5, 7, 18, 82, 196]), they involve additional complexity; hence, they are not adopted in the context of this

paper.

Remark 8.2.3 From Remark 8.2.1, the dynamics given by (8.7)-(8.9) can also be interpreted as an “ac-
tuator dynamics” problem, where (8.7) represents the system dynamics and (8.8) and (8.9) represent the
actuator dynamics. If there are uncertainties in the system dynamics (i.e., W, x(t) # 0), this becomes a non-
trivial problem for model reference adaptive control since the presence of the actuator dynamics prevent the
direct suppression of the uncertainties through the control channel (unmatched uncertainties as discussed
in Remark 8.2.2). On this subject, a practical approach referred to as hedging is proposed by the authors
of [30-33] to allow for correct adaptation in the presence of actuator dynamics. Furthermore, the work in
[95, 101-105, 114, 118] propose significant contributions to the hedging approach and make use of LMIs to
provide sufficient stability conditions. While these approaches are promising for the application of adaptive
control to uncertain dynamical systems with actuator dynamics, the interconnected uncertain dynamical
system considered in this paper includes additional complexity owing to the uncertainties in the actuated

dynamics and unknown physical interconnections that are not considered in [30-33, 95, 101-105, 114, 118].

The adaptive control problem considered in this paper is now stated as follows: Consider the
interconnected uncertain dynamical system given by (8.1) and (8.2). Design a control signal for the actuated
dynamics given by (8.2) such that a) trajectories of the actuated dynamics follow the trajectories of a desired
reference model, b) the trajectories of the unactuated dynamics given by (8.1) follow the trajectories of a
desired reference model, c) the respective system error trajectories of the actuated and unactuated dynamics
are restricted to a-priori, user-defined compact sets enforcing performance guarantees. For this purpose,

the next section introduces the proposed set-theoretic adaptive control architecture.

8.3 Adaptive Control for Unactuated Dynamics Through Interconnections

In this section, we propose a set-theoretic adaptive control architecture for the interconnected uncer-
tain dynamical system presented in Section 8.2 such that command following of the unactuated dynamics is

achieved. To begin with, we provide the following necessary definition [74].

Definition 8.3.1 Let ||y||y = \/Y'My be a weighted Euclidean norm, where y € R® is a real column vector

and M € RY*. We define ¢(||y|lm), ¢ : R® — R, to be a restricted potential function (barrier Lyapnunov
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function) defined on the set De = {y : ||y||m € [0,€)} with € € R, being an a priori, user-defined constant, if
the following statements hold: i) If ||y||m = 0, then ¢ (||y|]m) = 0. ii) If y € D¢ and ||y||m # 0, then ¢ (||y||m) >

0. iii) If ||y|lm — €, then ¢(|[y|lm) — oo. iv) ¢(||y|lm) is continuously differentiable on De. v) If y € Dg, then

Ga([l¥llmt) > 0. where @a(|[yllm) & “2. vi) If y € D, then 29a([Iyllwn) Iy Rs = 9 (Iyllw) > 0°7.

Now, consider the interconnected uncertain dynamical system given by (8.1) and (8.2) with (8.3)
and (8.4) as
x(t) = Ax(t)+B[(Jo+Ja)z(t) +Wrx(1)], (8.13)

(1) = Fz(t) + Glu(t) + (Ho + Hp)x(t) + Wl z(1)]. (8.14)

The remainder of this section is divided into two subsections. In Section 8.3.1, we design the proposed
control law as it applies to the actuated dynamics given by (8.14) and in Section 8.3.2 we address how
the unactuated dynamics given by (8.13) can be controlled by the physical interconnection to the actuated

dynamics.

8.3.1 Control Design for Actuated Dynamics

To control the actuated dynamics in the presence of system uncertainties and unknown physical

interconnections with the unactuated dynamics, consider the adaptive control given by

u(t) = —Kiz(t)+ Ko (t) — (Ho+ Ha(t))x(t) = W, (1)z(0), (8.15)

where K| € R9*? is designed such that F; £ F — GK, is Hurwitz, K, € R7*™ is designed such that —Jy(F —
GK,)"'GK, =1, and u;(t) € R™ is an additional control signal to be applied to the unactuated dynamics
which is designed in the next section. In addition, Hx(t) € R7*" and W,(t) € RP*? are the estimates of Hy

and W, satisfying the respective weight update laws given by

Ha(t) = oProj, [Ha(t), ¢a (|I2(2)]l5) GTSZ(t)x"(£)],  Ha(0) = Hao, (8.16)

The last condition vi) is shown in [74] to be necessary when the system uncertainties are time-varying such that a bounded
result is obtained for the closed-loop system stability. While we do not consider the actuated and unactuated system uncertainties
to be time-varying in the theoretical development of this paper, we include this final condition on the restricted potential function
such that our results can be readily extended for the practical case in which the uncertainties are time-varying.

7As considered in [72, 74, 134, 140, 195], a candidate restricted potential function that satisfies all the conditions stated in
Definition 8.3.1 has the form ¢ (||y|lm) = [y [|3;/(€ = |[¥]Im), ¥ € De.
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A

Wa(t) = 1Projy, [Wa(t), ¢a (|IZ(2)[|s)2(1)Z" (£)SG], Wa(0) = Wi, (8.17)

where & € R, and 9, € R are learning rates, ¢q (||Z(¢)||s) can be considered as an error dependent learning
gain, S € RY"” is a solution of the Lyapunov equation 0 = F,'S + SF, +1, and 7(t) £ z(t) — z,(t) is the system
error of the actuated dynamics with z;(¢) € R” being the reference state vector satisfying the reference model
dynamics that capture a desired closed-loop dynamical system performance motivated by Remark 8.2.1 and

given by®
Zr(t) = FrZr(t) "‘Gr”l(t)a Zr(o) = Zr0, (8.18)

with G; = GK, € RP*™ being the reference model input matrix’.

8.3.2 Control Design to Account for Unactuated Dynamics

In this section, the remaining control signal u; (¢) is designed to allow for command following of the
unactuated dynamics. It is applied to the actuated dynamics for the purpose of controlling the unactuated
dynamics through the physical interconnection of the two dynamics. To accomplish this, we start by adding

and subtracting the term “Bu (¢)” to unactuated dynamics such that (8.13) can be rewritten as

X(t) = Ax(t) +Blui(t) +Jaz(t) + W x(t)] + BlJoz(t) — uy (1)) (8.19)

Now, let the additional control signal be given by
ui(t) = —Lix(t)+Loc(t) — Ja(t)z(t) — W (2)x(1), (8.20)

where L; € R™*" is designed such that A, £ A — BL, is Hurwitz, L, € R™ ™ is a feedforward gain, and
c(t) € R™ is a given uniformly continuous bounded command. In addition, Ja(t) € R™*P and W,(t) € R

are the estimates of Jy and W satisfying the respective weight update laws given by

Js(t) = BProju [Aa(0), da(lle(t),) B Pe(t)2" (1)), Ja(0) = Jao. (8.21)
Wa(t) = uProjy, [Wa(r). 9 (le(t)]) x()e™ (1)PB], Wa(0) = Wi, (8.22)

8Stability of the considered reference model is addressed in the proof of Theorem 8.4.1 (also see the LMI analysis in Remark
8.4.1).

91n (8.16) and (8.17), a rectangular projection operator is used (see [6, 82] for more details) such that the element-wise projection
bounds |[Ha(1)]ij|< Hp max it (j—1)gr 1= L@y j=1,..00m, |[Wa(0)]ij| < Wamax,it(j—1)ps i = 1y-s P, j = 1,..., g, are respectively
satisfied.
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where B € R} and y, € Ry are learning rates, @4 (|le(r)||p) can be considered as an error dependent learning
gain, P € R"" is a solution of the Lyapunov equation 0 = A} P+ PA, +1, and e(t) £ x(t) — x;(¢) is the system
error of the unactuated dynamics with x,(¢) € R” being the reference state vector satisfying the following

reference model dynamics based on the hedging approach [30-33, 95, 101-105, 114, 118],

() = Awp(t)+ Bec(t) + B[Joz(t) —ui(1)],  x:(0) = xy0, (8.23)

with B, = BL, € R being the reference model input matrix'©.

8.4 Stability and Performance Guarantees

We now present the stability analysis and establish performance guarantees of the adaptive control
method proposed in Section 8.3 for the actuated and unactuated dynamics. For this purpose, we first state

the actuated system error dynamics resulting from (8.14), (8.15), and (8.18), as

{t) = Fi(t)—GHx(t)x(t) — GW,[ (1)z(1)), Z(0) = %o, (8.24)

where Hy (t) 2 H(t) — Ha € R?" and W, () £ W, (1) — W, € RP*? and the unactuated system error dynamics

resulting from (8.19), (8.20), and (8.23), as

é(t) = Ae(t) —BJa(t)z(t) — BW,) (t)x(t), e(0) = e, (8.25)
where Jy(t) £ Ja(t) — Ja € R™P and W, (t) £ W,(t) — W, € R™™. The following assumption is necessary
for the remaining results in this paper.

Assumption 8.4.1 The matrix

. A+BW]I(1) B(Jo+Ja(1))
A(Ja(t),Wa(1)) = , (8.26)
—G(Li+ W[ (1)) F—Gar)

is quadratically stable'!.

101y (8.21) and (8.22), a rectangular projection operator is used such that the element-wise projection bounds HfA(t)] i j,ﬁ
Jamax,it(j—tyms 1=1,om, j=1,....p, |[Wu(t)},-j|§ Wamax,i+-(j—1)ns £ = 1,..on, j = 1,...,m, are respectively satisfied.
I'Remark 8.4.1 addresses how this assumption can be satisfied using LMIs.
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Theorem 8.4.1 Consider the interconnected uncertain dynamical system described by (8.1) and (8.2), the
reference models given by (8.18) and (8.23), and the control laws given by (8.15) and (8.20) with the
update laws (8.16), (8.17), (8.21), and (8.22). If ||Z|lg < & and |eo||p < €&, then under Assumption
8.4.1, the solution (Z(t),e(t), Ha(t),Wa(t),Ja(t), Wu(t)) of the closed-loop interconnected dynamical system
is bounded, lim;_,..Z(t) = 0, and lim;_,.e(t) = 0. In addition, the actuated and unactuated system errors

strictly satisfy the a-priori given, user-defined performance bounds respectively given by
IZ0)lls < & tERy, (8.27)
le@®)llp < €, teR.. (8.28)

Proof. To show boundedness of the closed-loop interconnected dynamical system, consider the

energy function V : Dg, x D, x RIMAs) 5 RIM(Wa) o RAm(2) 5 Rim(Wa) _, R, given by

V(Z e, HyWa Js, W) = 0 (l2lls) + ¢ (lellp) + o~ e AR Ax+ 9 o Wi W,

+B e Sy Ja 4y e WW, (8.29)

where Do, £ {2(1) : 120)p < &} and Do, £ {e(r) - [le(t)p < &}, and RIWA),| RIm(%) REn(D) ang
RYm(%) denote the dimensions of Ha, Wy, Jx, and W, respectively!2.

Differentiating (8.29) yields

A

=204 (|12(1)15) " (1)S2(t) +20a (le(r) ) € (£)Pe(t) + 20 or HR (1) Halt)
+27, e W () Wa(e) + 2B e TR (0 () + 20 o W () Wa(0)

= =0 (|Z®) 1) 120 * = 9a (lle(®) 1) lle(t)|* = 204 (I12(1)5) 2" () SGHA(1)x(2)
—20q (|12(1) 5) 2" (1)SGW, (1)2(t) = 29a (lle(t) | o) €" (1) PBIA()2(z)
~264 ([le(t) ]| p) €™ (1) PBW, (1)x(1) + 20 "t Y (1) Ha (1) + 27, tr W, (1) Wa(2)

128 e TT()Ia (1) + 29 e W (6)Wa(1). (8.30)
Using (8.16), (8.17), (8.21), and (8.22), (8.30) reduces to

—0a (120 1) 120N = @a (lle(®)]lp) lle()]|* < O, (8.31)

')
12Note that V(0,0,0,0,0,0) = 0, V(Z,e, Hp, Wa, Ja, Wy) > 0 for all (,e, A, Wa,Ja, Wy) # (0,0,0,0,0,0), and d¢ (||Z(¢)||g) /dt =
20a ([|2(1)[15) 2" (1)SZ(2), d@ (lle(t)lp) /dr = 29a ([le(1)[|p) € () Pe(r).

V(
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which guarantees the Lyapunov stability, and hence, the boundedness of the solution (Z(¢),e(t), Ha(t), W, (1),
Ja(t), Wy (1)).

To reach the conclusion that lim, ,..Z(f) = 0 and lim,_,.e(f) = 0, we first show the boundedness of
the reference model signals z;(¢) and x.(¢). For this purpose, using (8.20), (8.18) and (8.23) can be written

in compact form as

0(t) = A(Jx(t), Wa(1))0(t) + (), (8.32)

where (1) = [x](¢),z] ()]T and

B[(Jo+Ja(1))Z(1) + (L1 + W (1) )e(r)]
w() = . (8.33)

GrlLac(t) = Ja()Z(t) = (Ly + W (1)) ()]

It follows from the Lyapunov stability of the solution (2(t),e(t),Ha(t), Wa(t), Ja(t),Wy(t)) that o(-) in
(8.32) is a bounded perturbation. Since @(-) is bounded and A(Ja(t), Wy (t)) is quadratically stable by
Assumption 8.4.1, it follows that x,(¢) and z.(¢) are bounded [88]. Moreover, z(¢) and x(¢) are bounded as
a consequence of the boundedness of the respective signals Z(¢), z:(¢), e(t), and x,(¢), such that from (8.24)
and (8.25), z(¢) and é(¢) are also bounded. Now, from the proof of Theorem 5.3 in [72], lim,,Z(t) = 0 and
lim;_,..e(t) = 0. Finally, (8.31) implies that V(3(t),e(t), Hx(t), Wa(2),Ja (1), Wa (1)) < Viax, Where Viax =
V(2(0),e(0),Ha(0), Wa(0),J5(0), Wy (0)). It then follows that ¢ (||Z(¢)[lg) < Vimax and ¢ ([le(t)]/p) < Vinaxs

and hence, the performance bounds respectively given by (8.27) and (8.28) are immediate. |

Remark 8.4.1 Similar to [95, 101-105, 114, 118], we now use LMIs to satisfy the quadratic stability [97]
of (8.26) for given projection bounds fAmax and Wy max on the elements of Jx(t) and Wy(t), respectively. To

elucidate this point, let J;, . i, € R™? and W,

i € R™™ be respectively defined as

3oy

(_l)ilfA,rnax,l (_1)i1+mfA,max,l+m e (_1)iH(pil)mfA,max,lJr(pf1)m
_ (_l)izfA,max,2 (_1)i2+mfA,max,2+m e (_1)i2+(p71)7’1fA,max,2+(p71)m
Iiy,oiy = . ‘ . ) (8.34)
(_1)i"1fA,max,m (_l)iszA,max,Zm e (_1)ipmfA,max,pm
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(_l)iIWu,max,l (_l)iH"Wu,max,lJrn s (_1)i1+<’n71)’l Au,max,l-s—(m—l)n

— (* 1)i2 Wu,max,2 (* 1 )izﬂ Wu,max,ZJrn s (* 1 ) et i u,max,2+(m—1)n

Wi, = , (8.35)
(*l)i"Wumax,n (*l)izn Au,max,Zn cee (*l)im"Wu,max,mn

-----

,,,,,,

the hypercube defining the maximum variation of Wu(t). Then, let

7T p—
A+BWUJ17~~-,ig B(J0+JA,i17-~-7if)

Ay = . B , (8.36)
_Gr(Ll + Wu,il,.‘.Jg) F'r - Gr]A,ilr

where h € {1,...,2(1’m+”’")}, be the corners of the hypercube constructed from all the permutations of
i and Wu7i17,__7ig. By proper selection of K| in F, = F — GK| and Ly, it can then be shown that

.....

Al uP+PA, i, < 0, P>0, (8.37)

implies that in(1), Wo(£)) P+ IA(1), Wa(2)) < , 99]; thus, one can solve the iven i
implies that AT (Ja(t), Wu (1)) P+ PA(Ja(t), Wa(r)) < 0[96, 99]; th Ive the LMI given by (8.37)

to ensure Assumption 8.4.1 is satisfied.

The performance bounds on the unactuated dynamics from Theorem 8.4.1 are “strict” in relation to
the reference model given by (8.23). Since this reference model alters the trajectory of the ideal reference

model dynamics given by

W) = AX() +Bee(t), x19(0) =AY, (8.38)

where x14(¢) € R" is the ideal reference state (which is bounded by Hxird (1) H2 < x for a bounded reference
command ||c(7)||, < ¢*), it is also necessary to analyze the distance between the unactuated dynamical
system and this ideal reference model. This is also considered to be important in other works in which
an ideal reference model has been modified (see, for example, [118, 197]). For this purpose, we define
%:(t) 2 x;(t) — xi9(1) as the error between the reference model given by (8.23) and the ideal reference (8.38).

Next, note that
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[x(0) =@, = le) + &)l

le(@)llz+ 1)1l (8.39)

IA

implying that decreasing the bounds on both error signals will effectively decrease the distance between the

unactuated dynamical system trajectory and the ideal reference model trajectory.

Remark 8.4.2 The performance bounds given by (8.27) and (8.28) can also be written as

8~
4 < 4
1Z0)l, < TS (8.40)
&
le()]l, < my (8.41)

respectively. From (8.41), we can enforce part of (8.39) through the a-priori, user-defined bound &,.
The next theorem shows the bound on ||%;(¢)]|, also depends on the enforced performance bounds.

Theorem 8.4.2 Consider the reference model for the actuated dynamics given by (8.18), the reference model
for the unactuated dynamics given by (8.23), and the ideal reference model given by (8.38) subject to the
control signal given by (8.20) and the update laws (8.21) and (8.22). Under Assumption 8.4.1, the upper

bound for ||%(t)||, is given by

. Amax(P) .
%@, < /lmin(P)G)’ (8.42)
where
* 4 -1 * & % % & .
o 2 207! |PBl [y (lmm(P)m)w (Min(s))ﬂuanc] (8.43)

Proof. Consider the reference model error dynamics obtained from the reference model (8.23) and

the ideal reference model (8.38) subject to the control signal (8.20) given by

(1) = A&@F)+BlJoz(t) —ui(1)]
— (A4 BWI ()& (1) + BUo+Ja(0))z(t) + B[(Li + W (1)er)

+(Jo +Ja(t))Z(t) + (L + WS (£))x1(t) — Loc(t)] - (8.44)

In addition, the reference model (8.18) subject to (8.20) can be written as
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a(t) = Falt) = Ge(Li+ W (0)%(t) = Ge[(Li + W (1))e(r)

+(Jo +Ja(0))2(1) + (L1 + W ()t (1) = Lac(1)]. (8.45)
Now, it follows that (8.44) and (8.45) can be written in compact form as
§(t) = AWA0),Wa(1)& (1) + Bx(-), (8.46)
with &(r) = [ (1), 27 (1)]", B=[B", ~G{]", and
k() = (Li+W (0)e(t) + (Jo+Ja(0))z(e) + (Ly + W (1)) (t) — Lac(r). (8.47)

Note that k(-) is bounded as a result of Theorem 8.4.1 and the boundedness of the ideal reference

model (8.38). This bound can be written as

IOl = @1+ W @))et) + (o +Ta(0))Z(0) + (Li + W (1)x () = Lac(1) |

IN

¥ (lle(@)lly +x0) + ™ 1Z() [l + 1 L2[lg ¢ (8.48)
where ”Ll +Wr (t)HF < y* and HJO +fA(t)HF < ¢*. Using the enforced performance bounds given by
(8.40) and (8.41), (8.48) can be further bounded as

&

V Amin (S)

Next, it follows from the quadratic stability of A(Jx(¢),Wy()) by Assumption 8.4.1 and compactness that

+[[Lallg <, (8.49)

IOl < w( +x;)+9°

Amin (P)

there exists a p € R, such that
AT (Fa (1), Wa(0))P + PAA(),Wa(2)) + pI < 0. (8.50)
Now, consider the positive-definite energy function
V() = &PE, 8.51)

where differentiation and use of (8.46) yields
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VW) = 28T(1)PE(r)
= &) [AT(a(0), Wa())P +PAUA0), Wa(t)] (1) + 28T (1) PBK(-).  (8.52)

Furthermore, using (8.49) and (8.50), one can write (8.52) as

IN

V(E())

—p E@3+21E@)L IPBlg %),
88(1,)+x;‘>+¢*82+ 2]

P IEOI3+21E O, [PB [w*( — s
— €)1 (1), - ©), (853)

IN

and hence, V(&(t)) < 0 outside the compact set Q = {& : ||&(1) ||, < ©*}.
Next, it follows that V(&) is upper and lower bounded by Ay;in(P) H&(l)H% < V(&) < Amax(P)

IE(2) 13, and since [|%(2)[13 < [|€(¢)|]3 it follows that
Aanin(P) 15015 < Amax(P) € (0)]13 < Amax (P)O". (8.54)

Division of both sides of (8.54) by Anin(P) and then taking the square root results in (8.42). [ |

Remark 8.4.3 From Theorem 8.4.2, one can reduce the bound on ||%(t)||, through the selection of the a-
priori, user-defined performance bounds in (8.27) and (8.28). It then follows from Theorems 8.4.1 and 8.4.2
as well as the discussion in Remark 8.4.2 that performance guarantees can be effectively enforced between

the unactuated dynamical system trajectories and the ideal reference model trajectories.

Remark 8.4.4 The reference model of the actuated system given by (8.18) already represents the ideal
dynamics. It is designed to match the ideal case discussed in Remark 8.2.1 such that the additional control
signal uy (t) can be “passed” through to the unactuated dynamics by means of the physical interconnection.

For this reason, a similar analysis as in Theorem 8.4.2 is not performed here.

8.5 Illustrative Numerical Example

We now present a numerical example to illustrate the efficacy of the proposed set-theoretic adaptive
control architecture. For this purpose, consider the interconnected uncertain dynamical system depicted in

Figure 8.2, which has an actuated cart interconnected to an unactuated cart with an inverted pendulum. The
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Figure 8.2: An interconnected system with an actuated cart physically connected to an unactuated cart with
inverted pendulum.

dynamics for the interconnected system in Figure 8.2 can be given by

0(r) 0 1 0 0|6 0
6(r) T U I B LIO) R (1)
= + (([ko,b0]+[5k,5b])
x(1) 0 0 O 1 x(1) 0 (1)
50 W0 -5 —A"T‘l_ 0| |
x(1) )
+[—6k,— 6D ; (8.55)
x(1)
2(t) 0 1| |z(t) 0 x(t)
= + <u(t) + ([ko,bo] + [Ok, 6[?])
£(1) —m =20 A (1)
z(t)
+ [ 8k, — 8] ) . (8.56)
(1)

For this example, the cart masses are known as M, = 10.0 (kg) and M,, = 5.0 (kg), the pendulum has a length
of I =3 (m) with a mass m = 1.0 (kg), and g = 9.81 (m/ s?) is the gravitational constant. In addition, the
spring constant k = ko + 8k has a known nominal value of ky = 5.0 (N-m~!) with 8k representing unknown
variation and the damper coefficient b = by + 0b has a known nominal value of by = 2.0 (N - sec - m~ 1) with
Ob representing unknown variation. For the simulation, 8k is set to 1.0 and b is set to 0.5. Furthermore,
we initialize the actuated cart at zo = [0.1,0]T and the unactuated cart at xo = [0.1,0,0.1,0] and apply a step

command signal for the unactuated cart.
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Linear quadratic regulation theory [91] is used to design the nominal feedback control gains K; and
L, for the actuated and unactuated carts respectively. Through tuning, we select the weighting matrices
0. = diag[600, 50] to penalize the states of the actuated cart and R, = 25 to penalize the control input
u(t), such that we obtain K; = [117.6,58.0] and design the Hurwitz reference model F; for the actuated
cart. For the unactuated cart, we select Q, = diag[0.1, 1, 10, 1] to penalize its states and R, = 1.27 " to
penalize the control input u; (¢) such that we obtain L; = [—186.7,—97.6,—10.8, —11.8] for the unactuated
cart, which is used to design its Hurwitz reference model matrix A;. The feedforward gain K is designed
such that —Jo(F — GK)~'GK, = 1, where Jy = [ko, bo|, which results in K = 24.5. Similarly, a pre-filter
is used such that a desired unactuated cart position x(¢) is followed. For this purpose, using C = [0,0,1,0],
the gain L, is calculated as Ly = —(C(A — BL;)~'B)~! = —5.8. Finally, using the rectangular projection
operator, bounds on the uncertainties are set element-wise to be 10% greater than each uncertain element
of W, = W, = [~8k,—6b]" and Hp = Jo = [6k,5b]. The learning gains are setas f, = o= ¢ = 8 = 1,
such that we solely focus on the ability of the error dependent learning gains ¢q (||Z(7)||) and ¢q (||e(r)||p)
to enforce the performance bounds which are set to & = €, = 0.25.

The feasibility of the control parameters and system uncertainties is first verified using the LMI
analysis discussed in Remark 8.4.1. With a feasible solution, the proposed adaptive control is implemented,
which results in the performance shown in Figures 8.3 and 8.4. In particular, Figure 8.3 shows that the
position of the unactuated cart properly follows the reference model trajectory, while the pendulum remains
properly inverted. Figure 8.4 shows that the performance bounds on the actuated and unactuated carts are
enforced for all time. The initial conditions of the carts start just within the user-defined bound such that the
error dependent gain is larger to prevent violation of the performance bound. As the command is applied

and the carts follow the command, the performance guarantee remains enforced.

8.6 Conclusion

We proposed an adaptive control architecture for interconnected uncertain dynamical systems to
control and enforce performance bounds on not only the actuated dynamics but also the unactuated dynamics
using the physical interconnection. It was shown that stability and enforced performance guarantees of
the interconnected system are obtained using a set-theoretic adaptive control architecture predicated on
restricted potential functions. As a result, the system error trajectories of the actuated and unactuated

dynamics were shown to be restricted and stay within user-defined limits even in the presence of uncer-
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tainties in both the actuated and unactuated dynamics as well as unknown physical interconnections. It was
also shown through application of LMIs that the stability of the selected control parameters and allowable

interconnected system uncertainties could be verified.
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Figure 8.3: Proposed set-theoretic adaptive control performance for interconnected actuated and unactuated
carts.
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Figure 8.4: Control signals, error dependent learning gains, and enforced performance bounds.
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CHAPTER 9: CONCLUDING REMARKS AND FUTURE RESEARCH

9.1 Concluding Remarks

The intent of this dissertation has been to present new model reference adaptive control architectures
with stability, performance, and robustness considerations, to address challenges related to the verification of
adaptive control systems. Specifically, the proposed architectures allow for improved transient performance
as well as enforced performance guarantees, trajectory following of nonlinear reference models, correct
adaptation in the presence of actuator dynamics, and control of large-scale interconnected modular systems.

To address the challenges in improving the transient performance, first an approach using artificial
basis functions was presented. These artificial basis functions are constructed using a gradient optimization
proceedure such that they can improve the transient response of an adaptively controlled system, and hence,
can be used to achieve predictable closed-loop system performance. This is then extended to a direct
uncertainty minimization approach that uses modification terms in the adaptive control law and the update
law to suppress the effect of system uncertainty on the transient system response for improved system
performance. In addition, the use of a varying gain on the modification term was shown to keep the
system error approximately within a-priori given, user-defined error performance bounds. This was then
generalized further to incorporate a nonlinear reference model to better capture the desired closed-loop
system performance for a class of nonlinear uncertain dynamical systems.

For the adaptive control of uncertain dynamical systems in the presence of high-order actuator
dynamics, an LMI-based hedging approach was presented. Specifically, the proposed approach modifies the
ideal reference model dynamics using the hedging method to allow correct adaptation that is not affected by
the presence of actuator dynamics. The stability of this modified reference model coupled with the actuator
dynamics was analyzed using tools and methods from Lyapunov stability, matrix mathematics, and LMIs.
In addition, the distance between the uncertain dynamical system and the ideal (i.e., unmodified) reference
model dynamics was also analyzed and it was remarked that this distance either can be made small by

increasing the learning gain and the bandwidth of the actuator dynamics or asymptotically vanishes when
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the uncertain dynamical system is driven by constant reference commands. This approach was further
generalized for the cases in which the system uncertainties are nonlinear, the actuator output is unknown,
and the actuator dynamics contain an additional throughput term with an application to the input time-delay
problem. In addition, a detailed presentation of the algorithm used to compute the high-order actuator
dynamics parameters was included with an application to a hypersonic vehicle model subject to pole-
zero actuator dynamics. Finally, to go beyond the hedging approach for actuator dynamics that can only
guarantee bounded trajectories in the neighborhood of the ideal reference model trajectories, a new model
reference adaptive control architecture using expanded reference models was proposed. It was shown that the
trajectories of the expanded reference model remain predictably close to the trajectories of the ideal reference
model as compared to the hedging approach. In addition, it was shown that asymptotic convergence to the
ideal reference model trajectories can be guaranteed using a new command governor architecture developed
for the proposed expanded reference model. Moreover, to achieve a robust implementation in the presence of
possible uncertainties in the bandwidths of actuator channels, the expanded reference model was redesigned
with the estimate of actuator bandwidths.

For the control of large-scale interconnected modular systems a new decentralized adaptive control
architecture was proposed using a set-theoretic adaptive approach predicated on restricted potential func-
tions. The key feature of this methodology was to restrict the system error trajectories of the active modules
such that they are guaranteed to stay within user-defined limits even in the presence of the unmodeled
dynamics resulting from the passive modules. This was then extended to control and enforce performance
bounds on not only the actuated dynamics (active module) but also the unactuated dynamics (passive
module) using the physical interconnection. Finally, it was also shown through application of LMIs that
the stability of the selected control parameters and allowable interconnected system uncertainties could be

verified.

9.2 Future Research

There are several possible research directions that can be considered for each result in this disserta-
tion. Since each architecture proposed assumes fully measurable states, one global direction is to extend to
the case in which there is limited state information (i.e., output feedback adaptive control). In addition, more
experimentation could be conducted to further show the effectiveness of the proposed results in real-world

scenarios and bridge the gap between theory and practice. One such possible experimental result for the
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work in Chapter 7 is an application to a small scale morphing wing aircraft. Additional experimentation
could also include application of the performance oriented architectures to unmanned aerial vehicles.

For the actuator dynamics problem, a large amount of work has already gone into the LMI-based
hedging approach including several generalizations as documented in Chapters 4 and 5. The improved
architecture proposed in Chapter 6 is a more recent result, and hence, only considers, first order actuators,
linear uncertainties, and known actuator outputs. Possible research directions would then be to extend
the work in Chapter 6 to consider high-order actuator dynamics, nonlinear uncertainties, and unknown
actuator outputs. Since the expanded reference model with the command governor architecture has been
shown to capture the ideal reference model trajectories (and the LMI-based hedging approach cannot), these
extensions would make this the most general approach for adaptive control systems subject to actuator
dynamics.

While the results in Chapter 7 and 8 consider fixed performance bounds, this can be generalized to
the case in which the performance bound is time-varying (i.e., £(¢)) by using recent results [160] proposed
for sole systems. This extension allows for the initial tracking error ¢(0) to be large and then converge
to a small region defined by €(¢). Finally, as noted in Section 1, addressing the challenges presented by
actuator nonlinearities is another possible research direction. Currently, the author has preliminary work on
this using the expanded reference model architecture for uncertain dynamical systems with both actuator

dynamics and actuator amplitude saturation limits [198].
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APPENDIX A: PROJECTION OPERATOR

Definition A.1 Consider a convex hypercube in the form Q = {6 cR": (Ol-min <6, <0™)iz1n at,
where Q € R", and Gl-mi“ and 6" respectively represent the minimum and maximum bounds for the ith
component of the n-dimensional parameter vector 0. Furthermore, for a sufficiently small positive constant
&, consider another hypercube in the form Q¢ = {9 eR": (Gimin +€ < 60; < 0™ —&)i—12,..n}, where

Q¢ C Q. The projection operator Proj : R" x R" — R" is then defined component-wise by

(%) v, i 6> 07— and ;> 0,
Proj(0,y) = (9,-—;?‘") vi, i 6; < 0™+ gy and y; < 0, (A.D)
Vi otherwise,

where y € R".

Based on Definition A.1 and 6* € Q, one can show the inequality (6 — 6*)T (Proj(0,y) —y) <
0, holds for 8 € Q and y € R"” [6]. In addition, we use a generalization of this definition to matrices
as Proj,,(0,Y) = (Proj(col;(®),col;(Y))...,Proj(col,,(®),col, (Y))), where ® € R™™, Y € R™™, and

col;(+) denotes the i-th column operator. In this case, for a given matrix ®*, it follows that tr [(@ —

®*)"(Proj,.(©,Y) —Y)] -y, [col,-(@ — ©")T(Proj(col;(®), col;(¥)) — col,-(Y))} < 0, holds.
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an “as-is” basis. Crealive Commans gives no waranties reganding its licenses, any material licensad
under their terms and conditions, or any related information. Creative Commons disclaims all liahility
for damages resulting from thair use (o the fullest extent possible.

Using Creative Commons Public Licenses

Creative Commons public licenses provide a standard set of terms and conditions that creators and
other rights holders may use ta share ariginal works of authorship and other material subject to
copyright and cerain other rights specified in the public license below. The following considerations are
for informational purpoeses anly, are nol exhaustive, and do not form part of our licenses.

Considerations for licensars: Our public licenses are intended for usa by those authorized o give
the public permizsion fo use matenal in ways atherwise resiricfed by copyright and certain ather
rights. Qur llcenses are irrevocabie. Licensors showd read and understand the terms and
conditions of the license fhey choose before applying f. Licensors should also secure &l nights
necassary bafore applying our Ncenses so that the public can reuse the materal as expectad.
Licensors should clearly mark any matenal not subject o the icense. This includes other CC-
ficensed material, or material used under an exception or imitation fo copyright. Mors
consideralions for licensors,

Considerations for the public: By using one af our public icenses, a fcensor grants the public
permission fo use the licansed matsnal under specified terms and condifions. If the licensor's
parmission is not necessary for any reason-for example, because of any applicable exceplion or
Iimiation fo copyright=then hat use (s not regulated by the icense. Our licanses gran! anly
permissions under copyright and certain other nghfs that a Neensar has autharity fo grant. Use of
the fcensed material may sl be restricted for ather reasons, including bacause olhers have
copyright or other rights in the material, A licensor may make special reguests, such as asking thal
all changes be marked or descnbed. Although not required by our licenses, pou are encouraged to
respect hose requests where reasonable. More considerations for the public,
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Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree 1o be bound by the terms and
conditions of this Craative Commans Attribution 4.0 Intemational Public Licenss ("Public License"). Ta the
extent this Public License may be interpreted as a contract, You are granted the Licensad Righis in
consideration af Your accaptance of thesa tarms and condilions, and the Licansor grants You such rights
in consideration of benefits the Licensor receives from making the Licansed Material available under
these terms and conditions.

Saction 1 - Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived from or
based upon the Licensed Material and in which the Licansed Material is translated, altared,
arranged, transformead, or otherwise madified in a mannear requiring permissicn undar the
Copyright and Similar Rights held by the Licensor. For purposes of this Public License, where the
Licensed Material is & musical work, perfformanca, or sound recording, Adapted Matarial is always
produced where the Licensed Material is synched in fimed relation with a moving image.

b. Adapter's License means lhe licanse You apply 1o Your Copyright and Similar Righls in Your
confributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copynght andfor similar rights closely related to copyright
including, without limitation, performance, broadcast, sound recording, and Swi Generis Database
Rights, withaul regard 1o how the rghts are labalad or categorized. For purposes of this Public
License, the rights specified in Section 2(k)(1}-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
autharity, may not be circumvented under laws fulfilling obligations under Aricle 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and'or similar international agreements.

a. Exceptions and Limitations means fair use, fair dealing, andior any olher exceplion or limitation
to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material 1o which the
Licensor appliad this Public License,

g. Licensed Rights means the rights granted to You subject to the terms and conditions of this
Public License, which are limited to all Copyright and Similar Rights that apply 1o Your use of the
Licensed Material and that the Licensor has authority to licanse,

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material fo the public by any means or process that requiras permission
under the Licensed Rights, such as reproduction, public display, public performance, distribution,
dissamination, communication, or importation, and o make material available to the public
including in ways that members of the public may access the material from a place and at a time
individually chosen by them.

- Sui Generis Database Rights means rights other than copyright resulting from Directive 86/9/EC
of the Eurcpean Pariament and of the Council of 11 March 1996 on the legal protection of
databases, as amended and/or succeeded, as wall as other assantially equivalent Aghts anywhere
in the warld,

k. ¥ou means the individual or entity exercising the Licensed Rights under this Public License. Your
has a coresponding meaning.

.

Section 2 = Scope.

a. License grant.
1. Subject to the terms and conditions of this Public License, the Licensor hereby granis You a
worldwide, royalty-free, non-sublicensable, non-exclusive, imevocable license o exercise
the Licensed Rights in the Licensed Material to:
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A reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material,

2. Exceptions and Limitations. For the avoidance of doubd, where Excaptions and Limitations
apply to Your use, this Public License does not apply. and You do nat need to comply with
its terms and conditicns.

3. Term. The term of this Public License is specified in Section B(g).

4. Media and formats; technical modifications allowed. The Licensor authorizes You o
exercise the Licensed Rights in all media and formats whether now known ar hereafter
created, and fo make technical modifications necessary to do s0. The Licensor waives
andior agrees nol to assarl any fght or authorly o forbid You fram making technical
madifications necessary to exercise the Licensed Rights, including technical modifications
necessary to circumvent Effective Technological Measures. For purposes of this Public
License, simply making maodifications authorized by this Saction 2(z){4) naver produces
Adapted Material.

5. Downslream recipiants.

A Dffer from the Licensor — Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights
under the terms and conditions of this Public License.

B. Mo downstream resfrictions. You may not offer or impose any additional or different
terms ar condilions on, ar apply any Effective Technalogical Measures 1o, tha
Licensed Material if doing so restricts exercise of the Licensed Rights by any
recipient of the Licensed Material.

8. Mo endorsament. Mathing in this Public License constitutes or may be construed as
permission ta assert ar imply that You are, or that Your use of the Licensed Material is,
connacled with, or sponsorad, endorsed, or granted official stalus by, the Licensor or othars
designated to receive attribution as provided in Section 3210 10AMI).

b, Other rights.

1. Maral rights, such as the right of integrity, are not licensed under this Public License, nor are
publicity, privacy, andfor cther similar personality righis; however, o the extent possible, the
Licensor waivas andior agrees nol o assert any such rghts held by the Licansor 1o tha
limited extent necassary to allow You to exencise the Licensed Rights, but not otherwise.

. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from Yau far the
exercise of the Licensed Rights, whether direcily or through a collecting society under any
volunlary or waivable statulory or compulsory licensing schame. In all olher cases the
Licensor expressly reserves any right to collect such royalties.

1]

Section 3 - License Conditions.,
Your exarcise of the Licensed Rights is expressly made subject to the following conditions.
a. Attribution,
1. If ¥ou Share the Licensad Materal {including in modified form}, You must:

A retain the following if it is supplied by the Licensar with the Licensed Material:

. identification of the creatons) of the Licensad Matenal and any others
designated to receive attribution, in any reasonable manner requested by the
Licensor (including by pseudonym If designated);

ii. & copyright notice,

iii. @ notice that refers to this Public License;

pabh ¥ o el et (Wagalog 1L
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iv. a notica that refers to the disclaimer of warranties;
v, a URI or hyperlink to the Licensed Material to the extent reascnably
practicable;
B, indicate if You modified the Licensed Material and retain an indication of any previous
madifications; and
C. indicate the Licensed Matenal is licensed under this Public License, and includea the
text of, or the LRI or hyperink to, this Public License.

2. You may safisfy the conditions in Section 3{a)i1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material, For example, it may
b reasonable lo satisfy the conditions by providing a URI ar hyperlink o a resource that
includes the reguired information.

3. If requested by the Licensor, You must remove any of the information required by Section
Jal(1)(A) to the exient reasonably practicable,

4, If You Share Adapted Material You produce, the Adapier's License You apply must not
prevent racipients of the Adapted Matarial from complying with this Public License.

Section 4 - Sui Generis Database Rights.

Where the Licensed Rights include Sul Generis Database Rights that apply o Your use of the Licensed
Material:

a. for the avoidance of doubt, Section 2(a)( 1) grants You the right to extract, reuse, reproduce, and
Share all or a substantial partion of the contents of the database;

b, if You include all or & substantial portion of the database contents in a database in which You have
Sul Generis Database Rights. then the database in which You have Sul Generis Database Rights
(but not its individuz| contents) is Adapted Material, and

. You must comply with the conditions in Section 3(a) if You Share all or & substantial portion of the
contents of the database.

Far the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under this
Public License whare the Licensad Rights include other Copyright and Similar Rights.

Section 5 — Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the
Licensor offers the Licensed Material as-is and as-available, and makes no representations
or warranties of any kind concerning the Licensed Material, whether express, implied,
statutory, or other. This includes, without limitation, warranties of title, merchantability,
fitness for a particular purpose, non-infringement, absence of latent or other defects,
accuracy, or the presence or absence of ermors, whether or not known or discoverable,
Where disclaimers of warranties are not allowed in full or in part, this disclaimer may not
apply to You,

b. To the extent possible, in no event will the Licensor be llable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect,
incidental, consequential, punitive, exemplary, or other losses, costs, expenses, or
damages arising out of this Public License or use of the Licensed Material, even if the
Licensor has been advised of the possibility of such losses, costs, expenses, or damages,
Where a limitation of liability is not allowed in full or in part, this limitation may not apply te
You.

c. The disclaimer of warranties and limitation of lability provided above shall be interpreted in a
manner that, to the extent possible, most closely appraximates an absolute disclaimer and waiver
of all liability.

— . ——" Y —— alf
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Section & — Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
Haowaver, if You fail to comply with this Public License, than Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section §(g), it reinstates:

1. automatically as of fhe date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation: or
2, upan express reinstatement by the Licensor.
For the avoidance of doubt, this Section &(b) does not affect any right the Licensor may have to
seak remadies for Your violations of this Public Licanse.

c. For the avoidance of doubt, the Licensar may also offer the Licensad Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will not
terminate this Public Licensa.

d. Sections 1, 5, 6. 7, and 8 survive termination of this Public License,

Section 7 — Other Terms and Conditions.

a. The Licensor shall nat be bound by any additional or different terms or conditions communicated
by You unless expressly agreed.

b. Any arrangaments, understandings, of agreements regarding the Licensed Matenal nat stated
herein are separate from and independent of the terms and conditions of this Public Licanse.

Saction 8 — Interpretation.

a. Far the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduce,
limit, restrict. or impose conditions on any use of the Licensed Material that could lawfully be made
without permission undear this Public Licensa.

b. To the extent possible, if any provision of this Public License s deemed unenforceable, it shall be
autarmatically reformed 1o the minimum extant necessary o make it anforceable. If the pravision
cannot be reformed, it shall be severed from this Public License without affecting the enforceakbility
of the remaining terms and conditions.

c. Mo term or condition of this Public License will be waived and no failure to comply consented to
unless expressly agreed to by the Licensor.

d. Mathing in this Public License constitutes or may be interpreted as a limitation upon, or walver of,
any privileges and immunities that apply to the Licensor or You, including from the legal processes
of any jurisdiction or authority.

Creative Commons is not a party to its public licensas. Motwithstanding, Creative Commons may elect
to apply one of its public licenses to material it publishes and in those instances will be considered the
“Licensor.” The text of the Crealive Commens public licenses is dedicated 1o the public domain under
the CCO Public Domain Dedication. Except far the limited purpose of indicating that material is shared
under a Creative Commaens public license or as otherwise permitted by the Creative Commons policies
published at creativecommons.org/policies, Creative Commans does not authorize the use of the
trademark "Creative Commans” or any other trademark or logo of Creafive Commons without its prior
written consant incleding, without limitatien, in connaclion with any unauthorized modifications 1o any of
its public licenses or any other arrangements, understandings, or agreements concarning use of
licensed material, For the aveidance of doubt, this paragraph does not form part of the public licenses,

Creative Commons may be contacted at creativecommans. org.
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Additional languages available: Bahasa Indonesia, Deutsch, francais, hrvatski, italiano, Nededands,
read the FAQ for more infarmation about official translations.

sitpa:Nemativecommons. ol cemasbyld (egalode i
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The permission below is for the use of material in Chapter 5.

TR0 Rigslink® by Copyright Glearance Cemsr
s Copyright . . '
&2 RightsLink = A £
D Center
QlEEE Tithe: Adaptive control for a class of LEETH
uncertain nonlinear dynamical
Requasting systems in the presence of ﬂ:,“;ﬁ *;:::;:?g-“"‘
permiszion high-grder actuater dynamics | Rightslink using your
e renes Conference American Contral Conference | S@pyright.cam credentials,
content from FIH&HMIJ!' [ncc] 2017 Alr=sdy 3 RightsLink wser ar
an IEEE : ’ want o jgarn mers?
publication Author: Benjamin C, Gruenwald
Publisher:  [EEE
Date: May 2017

Capyright & 2017, TEEE

Thesis / Dissertation Reusa

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however,
you may print out this statement to be used as a permission grant:

Regquiremanis o b followed when using any portion (e.q., fgure, graph, fable, or bextual material) of an IEEE
copwrighted papger in a thesis!

1) In the case of textual matenal (e.g., using short guotes or referring to the work within these papers) users
must give full credit to the ariginal source {author, paper, publication) foliowed by the IEEE copyright ling @ 2011
IEEE,

21 In the case of illustrations or tabular material, we require that the copyright line € [¥ear of orginal
publication] TEEE appear prominently with each reprinted figure and/or table,

1) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior authaor's approval.

Reguiraments to be followed when using an entire [EEE copyrighted paper in & thesis:

1) The following IEEE copyrighty cradit notice should be placed prominently in the references; € [year of original
publication] 1IEEE. Beprinted, with permission, from [author names, paper ttle, 1EEE publication tide, and
manth/year of publication]

21 Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis
an-line.

3} Im placing the thesis on the author's university website, please display the following message in a prominant
place on the website: In reference to 1EEE copyrighted material which is used with permission in this thesis, the
IEEE does not endorse any of [university/educational entity's name goes here]'s products o services, Internal ar
parsanal use of this material is permitted, [F interested in reprinting/republishing 1EEE copyrighted matarial for
advertising ar promotional purposes or for creating new collective works for resale or redistribution, please go to
Bttp:ffwww. ieee org/publications standards/publications/rights/rights link.html to learn how to obtain a License
from RightsLink.

If applicable, University Microfilms and/or FroQuest Library, or the Archives of Canada may supply single copios

of the dissertation.

Cogyright & 2018 Copyright Clearance Center, [ne, All Rights Reserved, Brivady slalerment, Terms snd Conditions.
Comments? We would like to hear from you. E-mail us at customerarefcopynght.com
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Benjamin Gruenwald <bcgruenwaldi@mail, usf.edu>

Permission Request

2 messapes

Benjarmnin Gruenwald <Begruerwald fDmail usl edus Thu, May 3, 2015 at ©:23 AM
Tor permissionsd@asmea.org

Hello,

| am ermailing o request permission (o use one aof my ASME conference papers in my dissartaton, | have the compleled
parmission request form altsched,

Thank yo.
Benjarmin

ﬂ Grusnwald_PermissionForm, pdf
271K

Bath Darchi <DarchiBiEasme.ong= Thu, May 3, 2018 at 3:28 PM
Tor Benjamin Gruenwald <begruansald@mail.usfedu=

Dear Prof, Graerwald,

It is gur pleasune 1o grant youl permission o use all ar any part of the ASME paper “A Moedel Reference Adaptive Conbral Framewosk
fgr Wncerain Dynamical Systems With High-Order Actuator Dynamics and Unknawn Actuator Dutpuls,” by Benjamin C. Gruenwalkd;
K. Marve Dogan; Tansal Yucolen; lonathan & Muse, Faper Number DSCCHLT-5062, oted Inogour lettar far inclusion inoa dissartaban
entitlod Toward Varifiable Adaptive Control Systems: High-Performance and Robust Architectures to be published by University of
south Florida,

Permission i granted for the specific use a3 stated herein and does nob permit Further use of the materisls without proper
sutharization, Praper stiribution must be made Lo the authon(s] of the materials. Please aote: if sny or &8 of the Figures and for
Tabdes are of another source, permission shiuld be granted from that outsde saurce of inclisde the reference of the orginal sausce,
ASME does not grant pesmission for cutside sousce material that may be referenced in the ASME works,

As is customary, we request that you ensure full acknowledgmeent of this material, the author(s), source and ASRME as original
puhblisher. Acknawledgment must be retained on all pages where figure is printed and distributed.

Many thanks for your interest in ASME publications,

Lincerely,

Beth Darchi

Publishing Admnistratos
AshAE

2 Park Avenue

e Yok, WY 100155550

darchilxiasme org
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Copright & 2017, COC Republication

Order Completed
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This Agreement between Benjamen Gruenwald {"You®) and American Inst of Asronautics and
hstronautics (ALAA] ("Americen Inst of Aeronautics and Astronautics (ALAR)") consists of your arder
details and the terms and congiticns provided by American Inst of Aergnautics and Astronautics
{Alaa} and Copyright Clearance Center
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AlsA SeiTech Foum P25 140 J01E-0844
A-12 Jamuary 2018, Kssimmes, Florids
2R ALAA Guidssce, M tien, sl Control Conf
Chack for
Lt |

Computing the Stability Limits of Pole-Zero Actuator
Dynamics on Adaptive Control Laws
for Aerospace Applications”

Benjamin C. Gruenwald®, Tansel Yucelen', and K. Merve Dogan®
University of South Florida

Jonathan A, Muse®
Air Force Research Laboratory

Daniel Wagner?
Czech Technical University

This paper illustrates an application of a linear matrix ineguality-based hedging approach
for model reference adaptive contral in the presence of pole-zero actuator dynamics. Specif-
ically, this approach uses a hedging signal to alter a given reference model trajectory such
that adaptation is not effected by the presence of actuator dynamies, then It wses linear
matrix inequalities (LMIs) to compute the stability limits of the adaptive control law as a
regult of the hedged reference model. In order to demonstrate the capability of the pro-
posed approach in providing safe and predictable limits, multiple cases of pole-zero actuator
dynamica are consldered on the short-period dynamics of a hypersonie vehicle model, where
a feasible region of safe actuation is computed for each pole-zero configuration.

I Introduction

Stability limits of adaptive controllers in the presence of actuator dynamics is a well-known problem, In
recent papers by the anthors (18], & new approach has been proposed using a hedged reference maodel
and linear matrix inequalities [LMIs) to compute stability hmits of adaptive controllers, In particular, we
have considered a wide range of generalizations of the proposed framework, including the cases known and
unknown control input, known and anknewn actuator output, linear and nonlinear uncertainties, and first-
order and high-order actuator dynamics. In our most recent work [8], an application to a hypersonic vehicle
madel is also included for fivst-order actuator models,
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1T, Yucelen is an Assistant Professor of the Department of Mechanical Enginesring and the Director of the Laboratory for
Autgnamy, Contrel, Information, and Systems (LACIS, hetp:) Swan lacis.team,’) at the University of South Florida, Tampa, FL
23620, USA (email: yucelen@usfedu). T, Yucelen is alse a Senior Member of the American Institute of Arranautics and Astronautics
and a Member of the National Academy of Inventors.

1K, M. Dogan is a Graduste Research Assistant of the Department of Mechanical Engineering and a Member of the Laboratory
for Autcnomy, Contred, Infarmation, and Systems (LACIS, http:/ Swwew lacis beam ] at the University of South Florida, Tampa, FL
33620, USA [email: dogan@mailusfedu).

E1 AL Muse is a Research Aeraspace Engineer of the Autonomows Contral Branch at the Air Farce Ressarch Laboratory Aeraspace
Systems Directorate, WPRAFE, OH 45433, USA [email: jonathan muse 28w af mil).

4D, Wagner is with the Advanced Algorithms for Contral and Communications Laboratory of the Department of Electrical Engi-
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*This research was supported by the Alr Force Research Laboratory Aeraspace Systems Directorate under the Universal Technology
Carporation Grant 17-58401-02-C1.
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Taylor & Francis

Taylor & Francis Group

Our Ref: KA/TCON/P18/1172
21 June 2018
Dear Benjamin C. Gruenwald,

Material requested: Benjamin C. Gruenwald, Ehsan Arabi, Tansel Yucelen, Animesh Chakravarthy &
Drew McMeely (2018): Decentralized Adaptive Architectures for Control of Large-Scale ActivePassive
Modular Systems with Stability and Performance Guarantees, International Journal of Control,

Thank you for your correspondence requesting permission to reproduce the above mentioned material
from our Journal in your printed thesis entitled “Toward Verifiable Adaptive Control Systems: High-
Performance and Robust Architectures™ and to be posted in the university’s repository — University of
South Florida

We will be pleased to grant permission on the sole condition that you acknowledge the original source
of publication and insert a reference to the article on the Journals website: htip://www.tandfonline.com

This is the authors accepted manuscript of an article published as the version of record in International
Journal of Control © 14 Jun 2018

This permission does not cover any third party copyrighted work which may appear in the material
requested.

Please note that this license does not allow you to post our content on any third party websites or
repositories.

Thank you for your interest in our Journal.
Yours sincerely
Kendyl

Kendyl Anderson - Permissions Administrator, Journals

Taylor & Francis Group

3 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN, UK.
Tel: +44 (0)20 7017 7617

Fax:+44 (0)20 7017 6336

Web: www.tandfonline.com

e-mail: kendyl.anderson@tandf.co.uk
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