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ABSTRACT

In this dissertation, new model reference adaptive control architectures are presented with stability,

performance, and robustness considerations, to address challenges related to the verification of adaptive

control systems.

The challenges associated with the transient performance of adaptive control systems is first ad-

dressed using two new approaches that improve the transient performance. Specifically, the first approach is

predicated on a novel controller architecture, which involves added terms in the update law entitled artificial

basis functions. These terms are constructed through a gradient optimization procedure to minimize the

system error between an uncertain dynamical system and a given reference model during the learning phase

of an adaptive controller. The second approach is an extension of the first one and minimizes the effect of

the system uncertainties more directly in the transient phase. In addition, this approach uses a varying gain

to enforce performance bounds on the system error and is further generalized to adaptive control laws with

nonlinear reference models.

Another challenge in adaptive control systems is to achieve system stability and a prescribed level

performance in the presence of actuator dynamics. It is well-known that if the actuator dynamics do not have

sufficiently high bandwidth, their presence cannot be practically neglected in the design since they limit the

achievable stability of adaptive control laws. Another major contribution of this dissertation is to address

this challenge. In particular, first a linear matrix inequalities-based hedging approach is proposed, where this

approach modifies the ideal reference model dynamics to allow for correct adaptation that is not affected by

the presence of actuator dynamics. The stability limits of this approach are computed using linear matrix

inequalities revealing the fundamental stability interplay between the parameters of the actuator dynamics

and the allowable system uncertainties. In addition, these computations are used to provide a depiction

of the feasible region of the actuator parameters such that the robustness to variation in the parameters is

addressed. Furthermore, the convergence properties of the modified reference model to the ideal reference

model are analyzed. Generalizations and applications of the proposed approach are then provided. Finally,

x
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to improve upon this linear matrix inequalities-based hedging approach a new adaptive control architecture

using expanded reference models is proposed. It is shown that the expanded reference model trajectories

more closely follow the trajectories of the ideal reference model as compared to the hedging approach

and through the augmentation of a command governor architecture, asymptotic convergence to the ideal

reference model can be guaranteed. To provide additional robustness against possible uncertainties in the

actuator bandwidths an estimation of the actuator bandwidths is incorporated.

Lastly, the challenge presented by the unknown physical interconnection of large-scale modular

systems is addressed. First a decentralized adaptive architecture is proposed in an active-passive modular

framework. Specifically, this architecture is based on a set-theoretic model reference adaptive control

approach that allows for command following of the active module in the presence of module-level system

uncertainties and unknown physical interconnections between both active and passive modules. The key

feature of this framework allows the system error trajectories of the active modules to be contained within a-

priori, user-defined compact sets, thereby enforcing strict performance guarantees. This architecture is then

extended such that performance guarantees are enforced on not only the actuated portion (active module) of

the interconnected dynamics but also the unactuated portion (passive module).

For each proposed adaptive control architecture, a system theoretic approach is included to analyze

the closed-loop stability properties using tools from Lyapunov stability, linear matrix inequalities, and matrix

mathematics. Finally, illustrative numerical examples are included to elucidate the proposed approaches.
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CHAPTER 1: INTRODUCTION

At a high level, control design consists of two parts; mathematically model the dynamical system

(process or plant) to be controlled and design a control law based on this model to achieve some desired level

of performance. In order to obtain a feasible control law, model simplifications of the dynamical system are

typically made. This can include making idealized assumptions, linearizations of a highly nonlinear dynam-

ical system, neglecting external disturbances, and neglecting different unmodeled dynamics. In addition,

there can exist a wide array of unpredictable conditions that can create uncertainty in the actual physical

system (e.g., structural damage in aircraft and spacecraft). As a result, there unavoidably exist system

uncertainties between the control model and the actual physical system. There exist two common approaches

that can account for these system uncertainties; robust control and adaptive control. While robust control

techniques are well developed in literature (see, for example [1, 2] and references therein), they may not be

able to guarantee certain levels of performance in the presence of large system uncertainties. In addition,

since robust controllers are tuned to the worst-case possible uncertainty, they can be (overly) conservative

effecting the achievable performance in order to ensure stability. In contrast, adaptive controllers are tuned

to the physical system in real time, not a worst-case scenario (that may never happen in practice). Thus,

adaptive controllers have the natural capability to estimate and suppress the effect of system uncertainties,

without necessarily sacrificing performance.

While adaptive controllers have been used in numerous applications to provide stability and even

achieve desired levels of performance without excessive reliance on mathematical models, widespread

adoption of these adaptive control systems is limited due to their lack of a-priori, verifiable performance

and robustness guarantees. For verifiable adaptive control systems, it is necessary to have system theoretic

approaches that allow for one to check and satisfy different conditions such that the adaptive control system

is guaranteed to perform as expected with a desired amount of robustness. A selection of different challenges

for verifiable adaptive control systems are depicted in Figure 1.1 in the context of a model reference

adaptive control framework which is considered throughout this dissertation. Briefly, the design of the
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model reference adaptive control framework [3–7] has three major components — a reference model, an

update law, and the adaptive feedback control law (typically augmented to an existing nominal control

design). In this framework, a desired closed-loop system performance is captured by the reference model

such as tracking an applied command c(t) as in Figure 1.1. The system error given as e(t) between the state

of this reference model xr(t) and the state of the uncertain dynamical system x(t) is used to drive the update

law online. This then allows the control law to adapt its feedback gains using the information received from

the update law for suppressing the system error.

Benjamin Gruenwald
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University of South Florida
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Figure 1.1: Model reference adaptive control framework and verification challenges.

This dissertation focuses on the challenges denoted with the asterisk in Figure 1.1. These will be

discussed in the remaining sections, but first it should be noted that while not addressed in this dissertation,

work has also been done, some by the author of this dissertation through collaborative efforts, to address the

challenges from the presence of: unmodeled dynamics (see, for example, [8–12] and references therein),

unmatched uncertainties (see, for example, [13–19] and references therein), unmeasurable states through

output feedback control (see, for example, [15, 20, 21] and references therein), and the processing effort

of control signals through event-triggering techniques (see, for example, [22] and references therein). In

addition, there are several approaches addressing the presence of actuator nonlinearities (see, for example,

[23–34] and references therein), where this is considered as a future research direction.
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1.1 Transient Performance Improvement and Guarantees

A well-known result in adaptive control theory is that the system error can be guaranteed to asymp-

totically vanish in the presence of system uncertainties; however, there are limited (more conservative)

guarantees in the transient portion that the system error does not violate physical constraints. Thus, the

ability to obtain predictable transient performance is still an important problem to the adaptive control

field – especially for applications to safety-critical systems and when there is no a priori knowledge on

the upper bounds of the existing system uncertainties [35–38]. One way to address this problem is to

use a high-gain learning rate in the update law which minimizes the worst-case system error such that

the transient performance can be improved during the learning phase. Even though this can be justified

theoretically [6], an update law subject to a high learning rate may not always be practically feasible [39, 40],

since it can lead to control signals with high-frequency content which can result in system instability for

practical applications. To avoid this, different approaches are proposed in [41–48] that introduce additional

mechanisms to model reference adaptive control laws that capture a form of the system uncertainty in order

to suppress its effect.

In this dissertation, two approaches are presented to address this problem. The first approach is

predicated on a novel controller architecture which, unlike the work [41–48], includes modification terms

in both the adaptive controller and the update law that are constructed through a gradient minimization

procedure. In this way, the system error between an uncertain dynamical system and a given reference

model can be minimized during the learning phase of the adaptive controller. A detailed stability analysis

of the proposed approach is provided as well as a discussion of the practical aspects of its implementation.

This approach is then illustrated through a numerical example.

Motivated by the first approach, the second one similarly uses a gradient minimization procedure to

suppress more directly the effect of system uncertainty on the transient system response. To go beyond the

first approach, the second approach is modified to be computationally less expensive and it can enforce the

system error to approximately stay in an a priori given, user-defined error performance bound. In addition,

this second approach is not only developed for adaptive control laws with linear reference models, but also

generalized using tools and methods from [49], for adaptive control laws with nonlinear reference models.

It is illustrated through two numerical examples; for the linear reference model the approach is applied to

a linearized hypersonic vehicle model and for the nonlinear reference model a wing rock like example is

3
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considered where the pilot authority has been limited. Finally, expiremental results are included from an

application to the Quanser AERO platform [50].

1.2 Nonlinear Reference Models

While it is of common practice to use linear reference models, this can limit the achievable closed-

loop dynamical system performance — especially for applications involving highly-capable dynamical

systems such as highly-maneuverable aircraft, missiles, and space launch vehicles. This is due to the fact that

linear reference models can only approximate the desired closed-loop behavior of these nonlinear dynamical

systems in narrow regions of the state-space. Notable contributions that utilize reference models with non-

linear dynamics are presented by the authors of [51–54]. However, these approaches either consider specific

theoretical frameworks requiring restrictive assumptions or they consider specific applications which cannot

be easily generalized.

Previous work by the author [49] proposes an adaptive control architecture using nonlinear refer-

ence models, where under minimal assumptions the system error is shown to asymptotically vanish. As

mentioned in the previous section the second gradient minimization based approach is generalized using

the adaptive control architecture in [49], but it goes beyond by enforcing performance bounds during the

transient-time.

1.3 Actuator Dynamics

As already mentioned, while addressing system uncertainties, the presence of unmodeled dynamics

are often neglected in the modeling process for model reference adaptive control designs. A practical form

of unmodeled dynamics, which is present in every physical system, is the actuator dynamics. Typically, the

effect of the actuators are neglected using the assumption that the actuator dynamics have sufficiently high

bandwidth. Yet, if the bandwidths of each actuator channel are not sufficiently large, then the closed-loop

system trajectories may not behave close to the reference model trajectories and, importantly, the stability

of the closed-loop system can be lost. Thus, from a verification standpoint, additional steps are necessary

to show the allowable bandwidth range of the actuator dynamics for safety-critical and human-in-the-loop

applications such that the adaptive control algorithms correctly suppress the system uncertainties.

The authors of [55–57] propose approaches that allow the design of model reference adaptive

controllers in the presence of actuator dynamics. These works include the actuator dynamics in the uncertain
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dynamical system such that the resulting closed-loop dynamical systems is analyzed. However, this can

result in imprecise estimation of the system uncertainties for the suppression of their effects. The authors of

[58] investigate how slow the actuator dynamics need to become before the closed-loop stability is negatively

effected for a scalar system. In addition, they then propose different modifications to the control law to

provide additional robustness when the actuator dynamics are not sufficiently fast. The authors of [30–33]

propose a well-respected practical approach in the aerospace engineering field known as (pseudo-control)

hedging. In particular, based on a given reference model capturing a desired closed-loop dynamical system

performance, the hedging approach alters the trajectories of this model enabling adaptive control laws to

be designed such that their stability is not affected by the presence of actuator dynamics. However, it is

not analyzed that this modification to the reference model dynamics does not yield to unbounded reference

model responses.

In this dissertation, several results for the actuator dynamics problem are presented. First, an

approach to compute stability limits for model reference adaptive control laws for uncertain dynamical

systems in the presence of high-order actuator dynamics is proposed. This approach, termed an LMI-

based hedging approach, modifies the ideal reference model dynamics to allow for correct adaptation in the

presence of high-order actuator dynamics. To compute the stability limit of the modified reference model,

LMIs are used such that this computation reveals the fundamental stability interplay between the parameters

of the actuator dynamics and the allowable system uncertainties. In addition, the distance between the

modified reference model trajectories and ideal reference model trajectories are analyzed, and a condition

for which these trajectories converge to each other is provided. These results are illustrated through a

numerical example.

Second, additional extensions of this LMI-based hedging approach are provided. Specifically, three

generalizations are considered for a class of uncertain nonlinear dynamical systems, unmeasurable actuator

outputs, and actuator dynamics with an additional throughput term. In addition, for the actuator dynamics

with an additional throughput term, an application for the input time-delay problem is presented. Further-

more, the method of computing the actuator parameters is more thoroughly addressed and an application to

a hypersonic vehicle model for different cases of pole-zero actuator dynamics is presented.

Third, an improved adaptive control architecture to the LMI-based hedging approach is presented.

While computing the stability limits is an important result for the presence of actuator dynamics, the LMI-

based hedging approach modifies the ideal reference model such that it is limited to achieving bounded
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controlled system trajectories around a neighborhood of this model capturing a desired closed-loop system

performance. This improved adaptive control architecture uses expanded reference models allows the

trajectories of the uncertain dynamical system to follow the trajectories of the expanded reference model

that are shown to remain predictably close to the trajectories of the ideal reference model, as compared to the

LMI-based hedging (and pseudo-control hedging) approach. In addition, a command governor architecture

is augmented with the proposed expanded reference model in order to achieve asymptotic convergence of

the expanded reference model trajectories to those of the ideal reference model such that the desired closed-

loop system performance can be captured. To provide (additional) robustness against possible uncertainties

in the actuator bandwidths an estimation of the actuator bandwidths is incorporated. This approach is also

illustrated with a numerical hypersonic vehicle example.

1.4 Interconnected Systems

The design and implementation of decentralized architectures for controlling complex large-scale

systems is a nontrivial control engineering task involving the consideration of components interacting with

the physical processes to be controlled. Specifically, large-scale systems are characterized by a large number

of highly-coupled heterogeneous components exchanging matter, energy, or information. Examples of such

systems include but are not limited to network systems, power systems, communication systems, process

control systems, water systems, highway systems, and air traffic control systems (see, for example, [59, 60]

and references therein). An important class of large-scale systems is modular systems in which there exists

a physical interconnection between modules. A major challenge in the control of modular systems is associ-

ated with the unknown physical interconnections between modules and module-level system uncertainties.

To this end, the authors of [61–73] propose notable adaptive control approaches to suppress the

effect of such uncertainties providing an effective control design methodology for large-scale modular

systems. However, these approaches require all modules of a large-scale system to be controlled, which

may not be possible especially for highly complex large-scale modular systems. For example, there may

exist a specific subset of modules in practice that cannot be accessed or some of the modules can be subject

to actuator failures in that it may not be possible to drive such modules through control signals. In this case,

the set of modules that cannot be driven by control signals affect the others as unmodeled dynamics.

This dissertation presents a new decentralized adaptive control architecture for large-scale modular

systems using an active-passive framework. Here, active modules refer to modules that receive a control
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signal and passive modules are modules that do not receive a control signal. Specifically, extending a set-

theoretic adaptive control approach developed in [74], an adaptive decentralized control law is designed for

each active module such that they can each effectively perform their individual objective in the presence

of module-level system uncertainties and unknown physical interconnections between other active modules

and passive modules. This framework allows the system error trajectories of the active modules to be

contained within a-priori, user-defined compact sets, thereby strict performance guarantees are enforced.

This result is also significant from the transient improvement perspective noted in Section 1.1. The efficacy

of the proposed decentralized adaptive control architecture is demonstrated with an illustrative numerical

example.

An extension of this result is also presented in which the control and performance enforcement for

a class of uncertain dynamical systems consisting of actuated (active) and unactuated (passive) portions that

are physically interconnected to each other is considered. In this extension, performance guarantees are

enforced on not only the actuated portion of the interconnected dynamics but also the unactuated portion by

means of the physical interconnection with the actuated portion of the dynamics. Specifically, the proposed

approach stabilizes the overall interconnected system in the presence of unknown physical interconnections

as well as system uncertainties. For enforcing performance guarantees, the set-theoretic model reference

adaptive control approach is also adopted to restrict the respective system error trajectories of the actuated

and unactuated dynamics inside a-priori, user-defined compact sets. In addition, drawing upon the work

done for the actuator dynamics problem discussed in Section 1.3, the proposed extension uses LMIs to

verify stability of appropriate control parameters as well as the allowable system uncertainties and unknown

physical interconnections. An illustrative numerical example is included to demonstrate the efficacy of the

proposed approach.

1.5 Organization

The organization of this dissertation is as follows. Chapter 2 presents a model reference adaptive

control approach predicated on a gradient optimization procedure to improve the transient response. This

is generalized in Chapter 3 to enforce performance guarantees and allow for the use of nonlinear reference

models. Chapter 4 presents the LMI-based hedging approach for high-order actuator dynamics and Chapter

5 provides generalizations and applications of this approach. In Chapter 6, an adaptive control architecture

using expanded reference models is presented for the actuator dynamics problem. Chapter 7 introduces a set-
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theoretic decentralized adaptive control architecture for large-scale active-passive modular systems, where

performance guarantees are enforced on the active modules. In Chapter 8 an extension is made to enforce

performance guarantees not only on the active module (actuated dynamics) but also on the passive module

(unactuated dynamics). Finally, concluding remarks and possible future research directions are presented in

Chapter 9.
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CHAPTER 2: ON TRANSIENT PERFORMANCE IMPROVEMENT OF ADAPTIVE CONTROL

ARCHITECTURES1

While adaptive control theory has been used in numerous applications to achieve given system

stabilization or command following criteria without excessive reliance on mathematical models, the ability

to obtain a predictable transient performance is still an important problem – especially for applications

to safety-critical systems and when there is no a priori knowledge on upper bounds of existing system

uncertainties. To address this problem, we present a new approach to improve the transient performance of

adaptive control architectures. In particular, our approach is predicated on a novel controller architecture,

which involves added terms in the update law entitled artificial basis functions. These terms are constructed

through a gradient optimization procedure to minimize the system error between an uncertain dynamical

system and a given reference model during the learning phase of an adaptive controller. We provide a

detailed stability analysis of the proposed approach, discuss the practical aspects of its implementation, and

illustrate its efficacy on a numerical example.

2.1 Introduction

Progress in adaptive control has been made to obtain desirable tracking and stabilization specifica-

tions while relaxing dependency on model accuracy. One of the challenges in adaptive control is to obtain a

predictable transient performance [35–38]. One way to address this problem is to use a high-gain learning

rate in the update law which minimizes the worst-case system error between an uncertain dynamical system

and a given reference model to guarantee transient performance improvement during the learning phase.

Even though this can be justified theoretically (see, for example, [6]), an update law subject to a very high

learning rate is not practically feasible [39, 40], since it can lead to control signals with high-frequency

dynamical system content (i.e., oscillations and high-levels of measurement noise) that can violate actuator

limits [31] and excite unmodeled dynamics [8] – resulting in system instability for practical applications.

1This chapter is previously published in [75]. Permission is included in Appendix B.
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The authors in [76] and [77] present high-gain adaptive controllers to subvert high-frequency dynamical

system content in the control signals so that their approaches become practically feasible. Even though

these approaches are promising, they require the knowledge of a (conservative) upper bound on the unknown

constant gain appearing in their uncertainty parameterization. While this upper bound may be available for

some applications, the actual upper bound may change and exceed its conservative estimate, for example,

when an aircraft undergoes a sudden change in dynamics as a result of reconfiguration, deployment of a

payload, docking, or structural damage [78]. In such circumstances, the performance of these adaptive

controllers may be poor, because tuning them online with a new upper bound is not possible. Furthermore,

the performance of these adaptive controllers in the face of high uncertainty levels may not be satisfactory

as well, because both controllers converge to a standard adaptive controller as the upper bound on the

unknown constant gain becomes arbitrarily large (see, for example, Section 2.1.2 of [76] and Section 4

of [77]). Therefore, it is important to achieve transient performance guarantees when there is no a priori

knowledge on such uncertainty upper bounds.

In this paper, we present a new approach to improve the transient performance of adaptive control

architectures. In particular, our approach is predicated on a novel controller architecture, which involves

added terms in the update law entitled artificial basis functions. These terms are constructed through a

gradient optimization procedure to minimize the system error between an uncertain dynamical system and

a given reference model during the learning phase of an adaptive controller – without requiring a priori

knowledge on upper bounds of existing system uncertainties. The proposed approach is a theoretical and

practical generalization of the method presented in [79]. Theoretically, this paper provides a stability

analysis that holds for a larger class of uncertain dynamical systems. Practically, it should be noted that

the method in [79] requires the differentiation of the system error, however this paper provides further

results to highlight how to implement the proposed approach without this requirement, which is important

for real world applications. We provide a detailed stability analysis of the proposed approach, discuss the

practical aspects of its implementation, and illustrate its efficacy on a numerical example. Although this

paper considers a particular adaptive control formulation, namely model reference adaptive control, the

presented approach can be used in a complimentary way with many other approaches to adaptive control.

The notation used in this paper is fairly standard. Specifically, R denotes the set of real numbers,

Rn denotes the set of n×1 real column vectors, Rn×m denotes the set of n×m real matrices, R+ (resp. R+)

denotes the set of positive (resp. non-negative-definite) real numbers, Rn×n
+ (resp. Rn×n

+ ) denotes the set of

10
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n× n positive-definite (resp. non-negative-definite) real matrices, Sn×n denotes the set of n× n symmetric

real matrices, Dn×n denotes the set of n×n real matrices with diagonal scalar entries, (·)T denotes transpose,

(·)−1 denotes inverse, tr(·) denotes the trace operator, and ‘,’ denotes equality by definition. In addition

we write λmin(A) (respectively λmax(A)) for the minimum and respectively maximum eigenvalue of the

Hermitian matrix A and det(A) for the determinant of the Hermitian matrix A. We also use ‖ · ‖2 for the

Euclidian norm, ‖ · ‖∞ for the infinity norm, and ‖ · ‖F for the Frobenius matrix norm. Futhermore, for the

signal x(t) = [x1(t),x2(t), ...,xn(t)]T ∈ Rn defined for all t ≥ 0, the truncated L∞ norm and the L∞ norm are

defined as ‖xτ(t)‖L∞
,max1≤i≤n(sup0≤t≤τ |xi(t)|) and ‖x(t)‖L∞

,max1≤i≤n(supt≥0 |xi(t)|), respectively.

The organization of this paper is as follows. Section 2.2 considers a particular adaptive control

formulation, namely model reference adaptive control, and presents the preliminaries associated with this

framework. Section 2.3 introduces the proposed artificial basis function approach to model reference

adaptive control and then provides performance improvement and stability results in detail. We discuss

the practical aspects of the proposed approach in Section 2.4 and present an illustrative example in Section

2.5. Conclusions are summarized in Section 2.6.

2.2 Mathematical Preliminaries

Consider the uncertain dynamical system given by

ẋ(t) = Ax(t)+Bu(t)+Dδ (x(t)), x(0) = x0, (2.1)

where x(t) ∈ Rn is the state vector available for feedback, u(t) ∈ Rm is the control input, δ : Rn→ Rm is an

uncertainty, A ∈ Rn×n is a known system matrix, B ∈ Rn×m is an unknown control input matrix, D ∈ Rn×m

is a known uncertainty input matrix, and the pair (A,B) is controllable. As standard, we assume that the

uncertainty in (2.1) can be parameterized as

δ (x) = W T
σ(x), x ∈ Rn, (2.2)

where W ∈ Rs×m is an unknown weight matrix and σ : Rn → Rs is a known basis function of the form

σ(x) = [σ1(x),σ2(x), . . . ,σs(x)]T, and the unknown control input matrix satisfies

B = DΛ, (2.3)

where det(DTD) 6= 0 and Λ ∈ Rm×m
+ ∩Dm×m is an unknown control effectiveness matrix.
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Next, consider the reference system capturing a desired closed-loop dynamical system performance

given by

ẋr(t) = Arxr(t)+Brc(t), xr(0) = xr0, (2.4)

where xr(t)∈Rn is the reference state vector, c(t)∈Rm is a given uniformly continuous bounded command,

Ar ∈ Rn×n is the Hurwitz reference system matrix, and Br ∈ Rn×m is the command input matrix. The

objective of the model reference adaptive control problem is to construct a feedback control law u(t) such

that the state vector x(t) asymptotically follows the reference state vector xr(t) subject to (2.2) and (2.3).

For the purpose of stating the preliminaries associated with the model reference adaptive control

problem, consider the feedback control law given by

u(t) = un(t)+ua(t), (2.5)

where un(t) ∈ Rm is the nominal feedback control law and ua(t) ∈ Rm is the adaptive feedback control law.

Additionally, let the nominal feedback control law be given by

un(t) = K1x(t)+K2c(t), (2.6)

where K1 ∈Rm×n and K2 ∈Rm×m are the nominal feedback and the nominal feedforward gains, respectively,

such that Ar = A+DK1, Br = DK2, and det(K2) 6= 0 holds. Now, using (2.5) and (2.6) in (2.1) yields

ẋ(t) = Arx(t)+Brc(t)+DΛ[ua(t)+W T
σ σ(x(t))+W T

un
un(t)], (2.7)

where Wσ ,WΛ−1 ∈ Rs×m and Wun , [I−Λ−1] ∈ Dm×m are unknown.

Motivating from the structure of the uncertain terms appearing in (2.7), let the adaptive feedback

control law be given by

ua(t) = −Ŵ T
σ (t)σ(x(t))−Ŵ T

un
un(t), (2.8)
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where Ŵσ (t)∈Rs×m and Ŵun(t)∈Rm×m are the estimates of Wσ and Wun , respectively, satisfying the weight

update laws

˙̂Wσ (t) = γσ σ(x(t))eT(t)PD, Ŵσ (0) = Ŵσ0, (2.9)

˙̂Wun(t) = γunun(t)eT(t)PD, Ŵun(0) = Ŵun0, (2.10)

where γσ ∈ Rs×s
+ ∩ Ss×s and γun ∈ Rm×m

+ ∩ Sm×m are the learning rate matrices, e(t) , x(t)− xr(t) is the

system error state vector, and P ∈ Rn×n
+ ∩Sn×n is a solution of the Lyapunov equation

0 = AT
r P+PAr +R, (2.11)

with R ∈ Rn×n
+ ∩Sn×n. Note that because Ar is Hurwitz, it follows from the converse Lyapunov theory [80]

that there exists a unique P satisfying (2.11) for a given R.

Now, using (2.8) in (2.7) yields

ẋ(t) = Arx(t)+Brc(t)−DΛ[W̃ T
σ (t)σ(x(t))+W̃ T

un
(t)un(t)], (2.12)

and the system error dynamics is given using (2.4) and (2.12) as

ė(t) = Are(t)−DΛ[W̃ T
σ (t)σ(x(t))+W̃ T

un
(t)un(t)], e(0) = e0, (2.13)

where W̃σ (t), Ŵσ (t)−Wσ ∈ Rs×m and W̃un(t), Ŵun(t)−Wun ∈ Rm×m.

Remark 2.2.1 The weight update laws given by (2.9) and (2.10) can be derived using Lyapunov analysis

by considering the Lyapunov function candidate (see, for example, [81])

V(e,W̃σ ,W̃un) = eTPe+ γ
−1
σ tr (W̃σ Λ

1/2)T(W̃σ Λ
1/2)+ γ

−1
un

tr (W̃unΛ
1/2)T(W̃unΛ

1/2). (2.14)

Note that V(0,0,0) = 0 and V(e,W̃σ ,W̃un) > 0 for all (e,W̃σ ,W̃un) 6= (0,0,0). Now, differentiating (2.14)

yields

13



www.manaraa.com

V̇(e(t),W̃σ (t),W̃un(t)) = −eT(t)Re(t)−2eT(t)PDΛW̃ T
σ (t)σ(x(t))−2eT(t)PDΛW̃ T

un
(t)un(t)

+2tr W̃ T
σ (t)γ

−1
σ

˙̂Wσ (t)Λ+2tr W̃ T
un
(t)γ−1

un
˙̂Wun(t)Λ, (2.15)

where using (2.9) and (2.10) in (2.15) results in

V̇(e(t),W̃σ (t),W̃un(t)) = −eT(t)Re(t)≤ 0. (2.16)

Since (2.16) holds, it follows from (Theorem 3.1, [80]) that the solution (e(t), W̃σ (t),W̃un(t)) of the closed-

loop dynamical system is Lyapunov stable for all initial conditions and t ∈ R+. This implies that the

terms e(t), W̃σ (t), W̃un(t)), σ(x(t)), and un(t) are bounded in (2.13), and hence, ė(t) is bounded for all

t ∈ R+. Furthermore, since V̈(e(t),W̃σ (t),W̃un(t)) = −2eT(t)Rė(t), the boundedness of ė(t) results in the

boundedness of V̈(e(t),W̃σ (t),W̃un(t)). It now follows from Barbalat’s lemma (Lemma 4.1, [80]) that

lim
t→∞
V̇
(
e(t),W̃σ (t),W̃un(t)

)
= 0, (2.17)

which consequently shows that e(t)→ 0 as t→ ∞.

Remark 2.2.2 For the case when the nonlinear uncertain dynamical system given by (2.1) includes bounded

exogenous disturbances, measurement noise, and/or the uncertainty in (2.1) cannot be perfectly parameter-

ized, then (2.2) can be relaxed by considering

δ (t,x) = W (t)T
σ(x)+ ε(t,x), x ∈ Dx, (2.18)

where W (t) ∈ Rs×m is an unknown time-varying weight matrix satisfying ‖W (t)‖F ≤ w and ‖Ẇ (t)‖F ≤ ẇ

with w ∈R+ and ẇ ∈R+ being unknown scalars, σ :Dx→Rs is a sufficiently approximated basis function

on x ∈ Dx using universal approximation tools such as neural networks, ε : R+×Dx → Rm is the system

modeling error satisfying ‖ε(t,x)‖2 ≤ ε with ε ∈ R+ being an unknown scalar, and Dx is a compact subset

of Rn. In this case, the weight update laws given by (2.9) and (2.10) can be replaced by

˙̂Wσ (t) = γσ Proj
[
Ŵσ (t), σ(x(t))eT(t)PD

]
, Ŵσ (0) = Ŵσ0, (2.19)

˙̂Wun(t) = γunProj
[
Ŵun(t), un(t)eT(t)PD

]
, Ŵun(0) = Ŵun0, (2.20)

14



www.manaraa.com

to guarantee the uniform boundedness of the system error state vector e(t) and the weight errors W̃σ (t) and

W̃un(t), where Proj denotes the projection operator [82].

Even though Remark 2.2.1 highlights that x(t) asymptotically converges to xr(t), x(t) can be far

different from xr(t) during the transient time (i.e., the learning phase of the adaptive controller). To address

this problem, we introduce the artificial basis function approach in the next section for transient performance

improvement.

2.3 Artificial Basis Functions for Transient Performance Improvement

In this section, we develop a new approach entitled artificial basis functions to improve the transient

performance of the model reference adaptive control framework introduced in Section 2. In order to

introduce our approach, we first write

ė(t) = Are(t)+DΛ
[
ua(t)+W T

σ σ(x(t))+W T
un

un(t)
]
, e(0) = e0. (2.21)

using (2.4) and (2.7). Next, we add a new term “W T
a σa(t)” to (2.21) as

ė(t) = Are(t)+DΛ
[
ua(t)+W T

σ σ(x(t))+W T
un

un(t)+W T
a σa(t)

]
, e(0) = e0, (2.22)

where we set Wa ≡ 0 in this term so that (2.21) and (2.22) are equivalent. Since the added term “W T
a σa(t)” is

zero by definition and it does not change the error dynamics, we call Wa ∈ Rm×q as the artificial weighting

and σa(t) ∈ Rq as the artificial basis function. Considering (2.22), we now let the new adaptive feedback

control law be

ua(t) = −Ŵ T
σ (t)σ(x(t))−Ŵ T

un
(t)un(t)−Ŵ T

a (t)σa(t), (2.23)

with Ŵa(t) ∈ Rm×q, which yields

ė(t) = Are(t)−DΛ
[
W̃ T

σ (t)σ(x(t))+W̃ T
un
(t)un(t)+W̃ T

a (t)σa(t)
]
, e(0) = e0, (2.24)

where W̃σ (t), Ŵσ (t)−Wσ ∈ Rs×m, W̃un(t), Ŵun(t)−Wun ∈ Rm×m, and W̃a(t), Ŵa(t)−Wa ∈ Rm×q (note

that W̃a(t) = Ŵa(t) since Wa ≡ 0). In the rest of this section, we choose the update laws for the artificial

15
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basis function σa(t) and the artificial weight update law Ŵa(t) in the proposed adaptive feedback control

law (2.23) in order to improve the transient performance without sacrificing the asymptotic stability of the

closed-loop system error dynamics in (2.24). To this end, the following two theorems present the main

results of this section.

Theorem 2.3.1 Consider the system error dynamics given by (2.24) and the artificial basis function update

law given by

σ̇a(t) = kŴa(t)(DTD)−1DT[ė(t)−Are(t)
]
, σa(0) = σa0 6= 0. (2.25)

where k ∈ R+. Then, (2.25) is constructed through the negative gradient of

J (·) =
1
2
‖Λ1/2(W̃ T

σ (t)σ(x(t))+W̃ T
un

un(t)+W̃ T
a (t)σa(t))‖2

2, (2.26)

with respect to σa(t).

Proof. Consider the cost function given by (2.26) and note that its gradient with respect to σa(t) has

the form

∂
[
−J (·)

]
∂σa(t)

= −W̃a(t)Λ
[
W̃ T

σ (t)σ(x(t))+W̃ T
un

un(t)+W̃ T
a (t)σa(t)

]
= −Ŵa(t)Λ

[
W̃ T

σ (t)σ(x(t))+W̃ T
un

un(t)+W̃ T
a (t)σa(t)

]
, (2.27)

since Wa ≡ 0. Using the idea presented in [46, 83, 84], we now construct the update law for the artificial

basis function as

σ̇a(t) = k
∂
[
−J (·)

]
∂σa(t)

= −kŴa(t)Λ
[
W̃ T

σ (t)σ(x(t))+W̃ T
un

un(t)+W̃ T
a (t)σa(t)

]
, σa(0) = σa0. (2.28)

Here, one can notice that (2.28) has unknown terms (i.e., Λ is unknown and the first two terms inside the

brackets are unknown since Wσ ∈ Rs×m and Wun ∈ Rm×m are unknown in W̃σ (t) = Ŵσ (t)−Wσ ∈ Rs×m

and W̃un(t) = Ŵun(t)−Wun ∈ Rm×m, respectively), and hence, it can not be implemented. To address this

16
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problem, (2.24) can be rewritten as

−Λ
[
W̃ T

σ (t)σ(x(t))+W̃ T
un

un(t)+W̃ T
a (t)σa(t)

]
= (DTD)−1DT[ė(t)−Are(t)

]
. (2.29)

Since (2.28) along with (2.29) leads to the artificial basis function update law given by (2.25), it follows that

(2.25) is the negative gradient of (2.26). �

Remark 2.3.1 The unknown magnitude of the mismatch term

W̃ T
σ (t)σ(x(t))+W̃ T

un
un(t)+W̃ T

a (t)σa(t), (2.30)

in (2.24) can lead to a large deviation of the state from the reference state during the learning phase of the

adaptive controller given by (2.23). From this standpoint, the proposed artificial basis function allows to

shape the system error by suppressing the mismatch term (2.30) in (2.24) due to gradient optimization, since

it is constructed to be the negative gradient of (2.26) with respect to σa(t) (see, for example, [46, 83, 84]

and references included therein on other applications of gradient optimization in the context of adaptive

control). Therefore, by adjusting k in (2.25), the uncertain dynamical system response and the reference

system response can be made close to each other for all time including the transient phase.

Remark 2.3.2 Even though the artificial basis function update law given by (2.25) has the time derivative

of the system error on its right hand side, we will see in Corollary 2.4.1 of the next section that we can use

an equivalent form of this update law without requiring this time derivative for real-world applications.

In Theorem 2.3.1, we developed an update law for the artificial basis function in order to improve

the transient performance of the system error dynamics. In the next theorem, we choose an appropriate

artificial weight update law Ŵa(t) (and also update laws for Ŵσ (t) and Ŵun(t)) to guarantee the asymptotic

stability of the closed-loop system error dynamics in (2.24). We will also show the transient performance

bounds satisfied by the system error dynamics.

Theorem 2.3.2 Consider the nonlinear uncertain dynamical system given by (2.1), the reference system

given by (2.4), the feedback control law given by (2.23) along with the update laws given by (2.25) and

17
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˙̂Wσ (t) = γσ

[
σ(x(t))eT(t)PD+µσ(x(t))σT

a (t)Ŵa(t)
]
, Ŵσ (0) = Ŵσ0, (2.31)

˙̂Wun(t) = γun

[
un(t)eT(t)PD+µun(t)σT

a (t)Ŵa(t)
]
, Ŵσ (0) = Ŵσ0, (2.32)

˙̂Wa(t) = γaσa(t)eT(t)PD, Ŵa(0) = Ŵa0 6= 0, (2.33)

where γσ ∈ R+, γun ∈ R+, γa ∈ R+, and µ ∈ R+. Then, the solution (e(t),W̃σ (t),W̃un(t),W̃a(t),σa(t)) of the

closed-loop dynamical system is Lyapunov stable for all initial conditions and t ∈R+, and limt→∞ e(t) = 0.

In addition, the system error dynamics satisfy the transient performance bounds given by

‖e(t)‖L∞
≤

√
ε/λmin(P), (2.34)

where

ε , λmax(P)‖e(0)‖2
2 + γ

−1
σ ‖W̃σ0Λ

1/2‖2
F + γ

−1
un
‖W̃un0Λ

1/2‖2
F + γ

−1
a ‖W̃a0Λ

1/2‖2
F + k−1‖σa(0)‖2

2. (2.35)

Proof. Consider the Lyapunov function candidate given by

V(e,W̃σ ,W̃un ,W̃a,σa) = eTPe+ γ
−1
σ tr

(
W̃σ Λ

1/2)T(W̃σ Λ
1/2)+γ

−1
un

tr
(
W̃unΛ

1/2)T(W̃unΛ
1/2)

+γ
−1
a tr

(
W̃aΛ

1/2)T(W̃aΛ
1/2)+µk−1

σ
T
a σa, (2.36)

where V(0,0,0,0,0) = 0 and V(e,W̃σ ,W̃un ,W̃a,σa)> 0 for all (e,W̃σ ,W̃un ,W̃a,σa) 6= (0,0,0,0,0). It follows

that

V̇(e(t),W̃σ (t),W̃un(t),W̃a(t),σa(t))

= 2eT(t)Pė(t)+2γ
−1
σ tr W̃ T

σ (t)Λ
˙̃Wσ (t)+2γ

−1
un

tr W̃un(t)Λ
˙̃Wun(t)

+2γ
−1
a tr W̃ T

a (t)Λ
˙̃Wa(t)+2µk−1

σ
T
a (t)σ̇a(t)

=−eT(t)Re(t)−2µσ
T
a (t)W̃a(t)ΛW̃ T

a (t)σa(t)

≤−eT(t)Re(t)≤ 0, t ∈ R+, (2.37)

which guarantees that (e(t),W̃σ (t),W̃un(t),W̃a(t),σa(t)) is Lyapunov stable, and hence, is bounded for all

t ∈R+. Since σ(x(t)), un(t), and σa(t) are bounded for all t ∈R+, it follows from (2.24) that ė(t) is bounded,
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and hence, V̈(e(t),W̃σ (t),W̃un(t),W̃a(t),σa(t)) is bounded for all t ∈ R+. Then according to Barbalat’s

lemma

lim
t→∞
V̇(e(t),W̃σ (t),W̃un(t),W̃a(t),σa(t)) = 0, (2.38)

which consequently shows that e(t)→ 0 as t→ ∞.

Additionally, because V̇(e(t),W̃σ (t),W̃un(t),W̃a(t),σa(t))≤ 0 for t ∈ R+, this implies that

V(e(t),W̃σ (t),W̃un(t),W̃a(t),σa(t))≤ V(e(0),W̃σ0,W̃un0,W̃a0,σa(0)). (2.39)

Then using the inequalities

λmin(P)‖e(t)‖2
2 ≤ V(e(t),W̃σ (t),W̃un(t),W̃a(t),σa(t)) (2.40)

and

V(e(0),W̃σ0,W̃un0,W̃a0,σa(0)) ≤ λmax(P)‖e(0)‖2
2 + γ

−1
σ ‖W̃σ0Λ

1/2‖2
F + γ

−1
un
‖W̃un0Λ

1/2‖2
F

+γ
−1
a ‖W̃a0Λ

1/2‖2
F + k−1‖σa(0)‖2

2 (2.41)

in (2.39) results in

‖e(t)‖2 ≤
√

ε/λmin(P). (2.42)

Since ‖ · ‖∞ ≤ ‖ ·‖2, and this bound is uniform, then (2.42) yields

‖eτ(t)‖L∞
≤

√
ε/λmin(P) (2.43)

therefore, (2.34) is a direct consequence of (2.43) because (2.43) holds uniformly in τ . �

2.4 Practical Considerations

In Theorem 2.3.1 of the previous section, it is noted that (2.25) presents the update law for the

artificial basis function that contains the time derivative of the system error in its right hand side. In practice,
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it is desired to remove this term from the update law. Motivating from the methods used in [85], the next

corollary presents an equivalent form of the update law in (2.25), but without the time derivative of the

system error.

Corollary 2.4.1 The update law for the artificial basis function given by (2.25) is identical to

σa(t) = σa(0)+ k

[(
Ŵa(t)(DTD)−1DTe(t)−Ŵa(0)(DTD)−1DTe(0)

)
(2.44)

−
∫ t

0
γaσa(τ)eT(τ)PD(DTD)−1DTe(τ)dτ−

∫ t

0
Ŵa(τ)(DTD)−1DTAre(τ)dτ

]
.

Proof. To show that (2.25) is equivalent to (2.44), we first integrate both sides of (2.25) as

∫ t

0

dσa

dτ
dτ = k

[∫ t

0
Ŵa(τ)(DTD)−1DT de(τ)

dτ
dτ−

∫ t

0
Ŵa(τ)(DTD)−1DTAre(τ)dτ

]
, (2.45)

where k is constant. The first term on the right hand side of (2.45) can then be manipulated using integration

by parts of the form

∫
UdV = UV −

∫
dUV , (2.46)

with U = Ŵa(τ)(DTD)−1DT and V = e(τ), and respectively dU = ˙̂Wa(τ)(DTD)−1DTdτ and dV = de(τ)
dτ

dτ .

This produces an equivalent term of the form

Ŵa(t)(DTD)−1DTe(t)−Ŵa(0)(DTD)−1DTe(0)−
∫ t

0

˙̂Wa(τ)(DTD)−1DTe(τ)dτ, (2.47)

that does not contain the time derivative of the system error. We can further expand this using (2.33) as

Ŵa(t)(DTD)−1DTe(t)−Ŵa(0)(DTD)−1DTe(0)−
∫ t

0
γaσa(τ)eT(τ)PD(DTD)−1DTe(τ)dτ. (2.48)

Using (2.48) instead of the first term on the right hand side of (2.38) and integrating the left hand side yields
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σa(t)−σa(0) = k

[(
Ŵa(t)(DTD)−1DTe(t)−Ŵa(0)(DTD)−1DTe(0)

)
−
∫ t

0
γaσa(τ)eT(τ)PD(DTD)−1DTe(τ)dτ

−
∫ t

0
Ŵa(τ)(DTD)−1DTAre(τ)dτ

]
. (2.49)

Adding the initial condition σa(0) to both sides concludes the proof. �

Since the update law of the artificial basis function given by (2.25), or equivalently (2.44), is derived

through a gradient optimization procedure, it may (or may not) induce oscillations to the system response

as the value of k gets large. Even though we did not observe such a oscillative system response in the

illustrative example of the next section (as well as in applications to various uncertain dynamical systems);

if such a situation happens, then it is of practical importance to robustify the proposed approach against

such oscillative (i.e., high-frequency) dynamical system content. To this end, one can adopt, for example,

the low-frequency learning idea of [35] to achieve both improved transient performance and smooth system

behavior. This is highlighted in the next corollary.

Corollary 2.4.2 Consider the nonlinear uncertain dynamical system given by (2.1), the reference system

given by (2.4), the feedback control law given by (2.23) along with the weight update laws given by (2.31),

(2.32), (2.33),

σ̇a(t) = kŴa(t)(DTD)−1DT[ė(t)−Are(t)
]
−c1(σa(t)−σaf(t)), (2.50)

and

σ̇af(t) = −c2(σaf(t)−σa(t)), (2.51)

where c1 ∈ R+, and c2 ∈ R+. Then the solution (e(t),W̃σ (t),W̃un(t),W̃a(t),σa(t),σaf(t)) of the closed-loop

system given by (2.24), (2.31), (2.32), (2.33), (2.50), and (2.51) is Lyapunov stable for all initial conditions

and t ∈ R+, and limt→∞ e(t) = 0.

Proof. Considering the Lyapunov function candidate given by

V(e,W̃σ ,W̃un ,W̃a,σa,σaf) = eTPe+ γ
−1
σ tr

(
W̃σ Λ

1/2)T(W̃σ Λ
1/2)+γ

−1
un

tr
(
W̃unΛ

1/2)T(W̃unΛ
1/2)

+γ
−1
a tr

(
W̃aΛ

1/2)T(W̃aΛ
1/2)+µk−1

σ
T
a σa + c−1

2 µk−1c1σ
T
afσaf, (2.52)
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where V(0,0,0,0,0,0)= 0 and V(e,W̃σ ,W̃un ,W̃a,σa,σaf)> 0 for all (e,W̃σ ,W̃un ,W̃a,σa,σaf) 6=(0,0,0,0,0,0).

Differentiating (2.52) along the closed-loop system trajectories of (2.24), (2.31), (2.32), (2.33), (2.50), and

(2.51) yields

V̇(e(t),W̃σ (t),W̃un(t),W̃a(t),σa(t),σaf(t)) = −eT(t)Re(t)−2µσ
T
a (t)W̃a(t)ΛW̃ T

a (t)σa(t)

−2µk−1c1(σa(t)−σaf(t))T(σa(t)−σaf(t))

≤ −eT(t)Re(t)≤ 0, t ∈ R+. (2.53)

Hence it is guaranteed that the closed-loop dynamical system given by (2.24), (2.31), (2.32), (2.33), (2.50),

and (2.51) is Lyapunov stable, and therefore bounded for all t ∈ R+. Since σ(x(t)), un(t), and σa(t) are

bounded for all t ∈ R+, it follows from (2.24) that ė(t) is bounded, and hence, V̈(e(t),W̃σ (t),W̃un(t),W̃a(t),

σa(t),σaf(t)) is bounded for all t ∈ R+. It then follows from Barbalat’s lemma that

lim
t→∞
V̇
(
e(t),W̃σ (t),W̃un(t),W̃a(t),σa(t),σaf(t)

)
= 0, (2.54)

which consequently shows that e(t)→ 0 as t→ ∞. �

It should be noted that using similar steps highlighted in Corollary 2.4.1, (2.50) can be equivalently

written as

σa(t) = σa(0)+ k

[(
Ŵa(t)(DTD)−1DTe(t)−Ŵa(0)(DTD)−1DTe(0)

)
−
∫ t

0
γaσa(τ)eT(τ)PD(DTD)−1DTe(τ)dτ−

∫ t

0
Ŵa(τ)(DTD)−1DTAre(τ)dτ

]

−
∫ t

0
c1(σa(τ)−σaf(τ))dτ, (2.55)

without the time derivative of the system error.

Remark 2.4.1 Following the discussion stated before Corollary 2.4.2, the added term to the right hand side

of (2.50) (or equivalently (2.55)) filters out possible high-frequency dynamical system content in σa(t) (while

preserving asymptotic stability of the system error dynamics) as one increases the design parameter c1 for

driving the trajectories of σa(t) closer to the trajectories of σaf(t). Note that the frequency content of such

possible high-frequency oscillations that one desires to suppress is defined through the design parameter

c2 in (2.51), which denotes the bandwidth of σaf(t) (we refer to [35] for additional technical details and

discussions).
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2.5 Illustrative Example

In order to illustrate the proposed adaptive control architecture based on artificial basis functions,

consider the nonlinear dynamical system representing a controlled wing rock dynamics model given by

ẋ1(t) = x2(t), x1(0) = 0, (2.56)

ẋ2(t) = Λu(t)+δ (x(t)), x2(0) = 0, (2.57)

where x1 represents the roll angle in radians and x2 represents the roll rate in radians per second. In (2.57),

δ (x) represents an uncertainty of the form δ (x) = α1x1 + α2x2 + α3|x1|x2 + α4|x2|x2 + α5x3
1, where αi,

i = 1, . . . ,5, are unknown parameters that are derived from the aircraft aerodynamic coefficients. For our

numerical example, we set α1 = 0.1414, α2 = 0.5504, α3 = −0.0624, α4 = 0.0095, α5 = 0.0215, and

Λ = 0.5. We choose K1 = [−0.16,−0.57] and K2 = 0.16 for the nominal controller design that yields to a

reference system with a natural frequency of ωn = 0.40 rad/s and a damping ratio ζ = 0.707. For the standard

adaptive controller design given by (2.5), (2.6), (2.8), (2.9), and (2.10)), σ(x) =
[
x1, x2, |x1|x2, |x2|x2, x3

1

]T
is used for the basis function and we set R = I2. For the proposed adaptive controller design given by (2.5),

(2.6), (2.23), (2.31), (2.32), (2.33), and (2.44), we use the same basis function and R as well as q = 1 is

chosen implying the artificial basis function is one-dimensional.

Figures 2.1–2.6 compare the standard control design with the proposed design for a given square-

wave tracking command. In particular, Figures 2.1–2.3 show the standard model reference adaptive control

design with adaptation gains of γσ = γun = 0.5,10, and 50, respectively. The higher adaptation gain used in

Figure 2.3 yields to a better system performance pertaining to the roll angle, but it is not acceptable due to

the oscillative content in the roll rate response and the control response. Figures 2.4–2.6 show the proposed

design with the smallest adaptation gain used for the standard design, i.e., γσ = 0.5. As we increase k from

5 to 25, and then 25 to 100, these figures clearly highlight the improvement on the transient performance

due to the nature of gradient optimization. In other words, the results with the proposed adaptive controller

design, especially the ones in Figures 2.5 and 2.6, are superior as compared with the standard ones.
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Figure 2.1: Standard adaptive control performance with (2.5), (2.6), (2.8), (2.9), and (2.10) for a given
square-wave tracking command (γσ = 0.5 and γun = 0.5).
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Figure 2.2: Standard adaptive control performance with (2.5), (2.6), (2.8), (2.9), and (2.10) for a given
square-wave tracking command (γσ = 10 and γun = 10).
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Figure 2.3: Standard adaptive control performance with (2.5), (2.6), (2.8), (2.9), and (2.10) for a given
square-wave tracking command (γσ = 50 and γun = 50).
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Figure 2.4: Proposed adaptive control performance with (2.5), (2.6), (2.23), (2.31), (2.32), (2.33), and
(2.44) for a given square-wave tracking command (Ŵa0 = 0.1, σa0 = 0.1, γσ = 0.5, γun = 1, γa = 1, k = 5,
and µ = 1).
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Figure 2.5: Proposed adaptive control performance with (2.5), (2.6), (2.23), (2.31), (2.32), (2.33), and (2.44)
for a given square-wave tracking command (Ŵa0 = 0.1, σa0 = 0.1, γσ = 0.5, γun = 1, γa = 1, k = 25, and
µ = 1).
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Figure 2.6: Proposed adaptive control performance with (2.5), (2.6), (2.23), (2.31), (2.32), (2.33), and (2.44)
for a given square-wave tracking command (Ŵa0 = 0.1, σa0 = 0.1, γσ = 0.5, γun = 1, γa = 1, k = 100, and
µ = 1).
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2.6 Conclusion

To contribute to the previous studies in adaptive control theory, we investigated a new approach

based on artificial basis functions. Specifically, we showed that these functions, which are constructed

based on gradient optimization, can improve the transient response of an adaptively controlled system, and

hence, can be used to achieve predictable closed-loop system performance. We further discussed in detail

regarding the practical aspects of the proposed design and included a detailed illustrative example. Future

research will include extensions to uncertain dynamical systems with limited state information (i.e., output

feedback adaptive control), state constraints, and control constraints.
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CHAPTER 3: DIRECT UNCERTAINTY MINIMIZATION FRAMEWORK FOR SYSTEM

PERFORMANCE IMPROVEMENT IN MODEL REFERENCE ADAPTIVE CONTROL1

In this paper, a direct uncertainty minimization framework is developed and demonstrated for

model reference adaptive control laws. The proposed framework consists of a novel architecture involving

modification terms in the adaptive control law and the update law. In particular, these terms are constructed

through a gradient minimization procedure in order to achieve improved closed-loop system performance

with adaptive control laws. The proposed framework is first developed for adaptive control laws with linear

reference models and then generalized to adaptive control laws with nonlinear reference models. Two

illustrative numerical examples and experimental results are included to demonstrate the efficacy of the

proposed framework.

3.1 Introduction

Research in adaptive control algorithms is primarily motivated by the fact that these algorithms have

the capability to estimate and suppress the effect of system uncertainties resulting from imperfect system

modeling, degraded modes of operation, abrupt changes in dynamics, damaged control surfaces, and sensor

failures; to name but a few examples. Although government and industry agree on the potential of these

algorithms in providing safety and reducing system development costs, a major issue is their poor transient

performance.

To address this problem, authors of [41–48] present modifications to adaptive update laws. In

particular, the work in [41–43] uses filtered versions of the control input and state, [44–46] uses a moving

time window of the system uncertainty, and [47, 48] uses recorded and instantaneous data concurrently. In

contrast to these approaches, the authors of [75, 79, 87] present an approach called artificial basis functions

that adds modification terms not only to the update law but also to the adaptive controller and show that

1Portions of this chapter are previously published in [86]. It is an open access article distributed under the terms and conditions
of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). The license is included in
Appendix B.
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the system error can be suppressed during the transient system response. The common denominator of the

approaches in [41–48, 75, 79, 87] is that they introduce additional mechanisms to model reference adaptive

control laws that capture a form of the system uncertainty in order to suppress its effect.

In this paper, we introduce a novel framework called direct uncertainty minimization for model

reference adaptive control laws. Unlike the approaches in [41–48], the proposed framework consists of an

architecture involving modification terms in both the adaptive controller and the update law such that these

terms are activated when the system error is nonzero and vanishes as the system reaches its steady state. In

addition, this new framework directly allows to suppress the effect of system uncertainty on the transient

system response through a gradient minimization procedure, and hence, leads to improved system perfor-

mance. Furthermore, unlike the approaches in [75, 79, 87], the proposed framework is computationally

less expensive and it can enforce the system error to approximately stay in an a priori given, user-defined

error performance bound. The proposed framework is first developed for adaptive control laws with linear

reference models and then generalized to adaptive control laws with nonlinear reference models. This

generalization adopts tools and methods from [49].

The organization of this paper is as follows. Section 3.2 highlights the notation used in this paper

and states necessary mathematical preliminaries. Section 3.3 introduces the proposed direct uncertainty

minimization framework, while Section 3.4 generalizes the results of Section 3.3 to a class of nonlinear

reference models. Two illustrative numerical examples and experimental results are provided in Sections

3.5 and 3.6 to demonstrate the efficacy of the proposed approach to model reference adaptive control and

conclusions are finally summarized in Section 3.7.

3.2 Notation and Mathematical Preliminaries

We use a fairly standard notation, where R denotes the set of real numbers, Rn denotes the set of n×

1 real column vectors, Rn×m denotes the set of n×m real matrices, R+ (resp. R+) denotes the set of positive

(resp. non-negative-definite) real numbers, Rn×n
+ (resp. Rn×n

+ ) denotes the set of n×n positive-definite (resp.

non-negative-definite) real matrices, Dn×n denotes the set of n×n real matrices with diagonal scalar entries,

(·)T denotes transpose, (·)−1 denotes inverse, tr(·) denotes the trace operator,
∣∣∣∣·∣∣∣∣2 denotes the Euclidian

norm,
∣∣∣∣·∣∣∣∣F denotes the Frobenius matrix norm, and “,” denotes equality by definition. Furthermore, we

write λmin(A) (resp., λmax(A)) for the minimum (resp. maximum) eigenvalue of the Hermitian matrix A.
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We next state necessary preliminaries on the model reference adaptive control problem. For this

purpose, consider the uncertain dynamical system given by

ẋp(t) = Apxp(t)+BpΛu(t)+Bpδp(xp(t)), xp(0) = xp0, (3.1)

where xp(t) ∈ Rnp is the state vector available for feedback, u(t) ∈ Rm is the control input restricted to the

class of admissible controls consisting of measurable functions, δp :Rnp→Rm is an uncertainty, Ap ∈Rnp×np

is a known system matrix, Bp ∈ Rnp×m is a known control input matrix with BT
p Bp being nonsingular, Λ ∈

Rm×m
+ ∩Dm×m is an unknown control effectiveness matrix, and the pair (Ap,Bp) is controllable. The next

assumption is standard in adaptive control literature [5–7].

Assumption 3.2.1 The uncertainty in (3.1) is parameterized as

δp(xp(t)) = W T
p σp(xp(t)), xp(t) ∈ Rnp , (3.2)

where Wp ∈ Rs×m is an unknown weight matrix and σp : Rnp → Rs is a known basis function of the form

σp(xp(t)) = [σp1(xp(t)),σp2(xp(t)), . . . ,σps(xp(t))]T.

For addressing command following, let c(t) ∈ Rnc be a given piecewise continuous command and

xc(t) ∈ Rnc be the integrator state given by the dynamics

ẋc(t) = Epxp(t)− c(t), xc(0) = xc0, (3.3)

where Ep ∈ Rnc×np selects a subset of xp(t) to follow c(t). Based on the above construction, (3.1) and (3.3)

are now augmented as

ẋ(t) = Ax(t)+BΛu(t)+BW T
p σp(xp(t))+Brc(t), x(0) = x0, (3.4)

where x(t), [xT
p (t),x

T
c (t)]

T ∈ Rn, n = np +nc, is the augmented state vector, x0 = [xT
p0,x

T
c0]

T ∈ Rn, and

A ,

Ap 0np×nc

Ep 0nc×nc

 ∈ Rn×n, (3.5)

B , [BT
p , 0T

nc×m]
T ∈ Rn×m, (3.6)
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Br , [0T
np×nc

, −Inc×nc ]
T ∈ Rn×nc . (3.7)

Consider now the feedback control law given by

u(t) = un(t)+ua(t), (3.8)

where un(t) and ua(t) are the nominal feedback control law and the adaptive feedback control law, respec-

tively. Let the nominal feedback control law be further given by

un(t) =−Kx(t), K ∈ Rm×n, (3.9)

such that Ar , A−BK is Hurwitz. Using (3.8) and (3.9) in (3.4) yields

ẋ(t) = Arx(t)+Brc(t)+BΛ[ua(t)+W T
σ(x(t))], (3.10)

where

W , [Λ−1W T
p ,(Λ

−1− I)]T ∈ R(s+m)×m (3.11)

is an unknown aggregated weight matrix and

σ(x(t)) , [σT
p (xp(t)),xT(t)KT]T ∈ R(s+m) (3.12)

is a known aggregated basis function. Considering (3.10), the adaptive control law is given by

ua(t) = −Ŵ T(t)σ(x(t)), (3.13)

where Ŵ (t) ∈ R(s+m)×m is the estimate of W satisfying the weight update law

˙̂W (t) = γσ(x(t))eT(t)PB, Ŵ (0) = Ŵ0. (3.14)
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In (3.14), γ ∈R+ is the learning rate, e(t), x(t)−xr(t) is the system error state vector with xr(t)∈Rn being

the reference state vector satisfying the reference model dynamics

ẋr(t) = Arxr(t)+Brc(t), xr(0) = xr0, (3.15)

and P ∈ Rn×n
+ is a symmetric solution of the Lyapunov equation

0 = AT
r P+PAr +R, R ∈ Rn×n

+ . (3.16)

Now, using (3.13) in (3.10) yields

ẋ(t) = Arx(t)+Brc(t)−BΛW̃ T(t)σ(x(t)), (3.17)

and the system error dynamics are given using (3.15) and (3.17) as

ė(t) = Are(t)−BΛW̃ T(t)σ(x(t)), e(0) = e0, (3.18)

where W̃ (t), Ŵ (t)−W ∈ R(s+m)×m and e0 , x0− xr0.

Remark 3.2.1 The update law given by (3.14) can be derived using Lyapunov analysis by considering the

Lyapunov function candidate (see, for example, [5–7])

V(e,W̃ ) = eTPe+ γ
−1tr (W̃Λ

1/2)T(W̃Λ
1/2). (3.19)

Note that V(0,0) = 0 and V(e,W̃ )> 0 for all (e,W̃ ) 6= (0,0). Now, differentiating (3.19) yields

V̇(e(t),W̃ (t)) = −eT(t)Re(t)−2eT(t)PBΛW̃ T(t)σ(x(t))+2γ
−1tr W̃ T(t) ˙̂W (t)Λ, (3.20)

where using (3.14) in (3.20) results in

V̇(e(t),W̃ (t)) = −eT(t)Re(t)≤ 0, t ∈ R+, (3.21)
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which guarantees that the system error state vector e(t) and the weight error W̃ (t) are Lyapunov stable, and

hence, are bounded for all t ∈ R+. Since σ(x(t)) is bounded for all t ∈ R+, it follows from (3.17) that ė(t)

is bounded, and hence, V̈(e(t),W̃ (t)) is bounded for all t ∈R+. Now, it follows from Barbalat’s lemma [88]

that

lim
t→∞
V̇
(
e(t),W̃ (t)

)
= 0, (3.22)

which consequently shows that e(t)→ 0 as t→ ∞.

Remark 3.2.2 In this paper, we assume that the uncertainty can be perfectly parameterized as in (3.2),

which implies that the structure of the uncertainty is known. To elucidate this point, consider an example

with the uncertainty δp(xp(t)) = α1xp1(t)+α2x2
p1(t)+α3xp3(t), where xT

p = [xp1(t),xp2(t)] is the state vector

and α1, α2, and α3 are some unknown parameters. In this case, it follows from the parameterization in (3.2)

that W T
p = [α1,α2,α3] and σT

p (xp(t)) = [xp1(t),x2
p1(t), xp3(t)]. That is, provided that one knows the structure

of the uncertainty as in this representative example, the basis function can be easily formed. For situations

when one does not know the structure of the uncertainty and the uncertainty in (3.1) cannot be perfectly

parameterized, then Assumption 3.2.1 can be relaxed by considering [89, 90]

δp(t,xp(t)) = W T
p (t)σp(xp(t))+ εp(t,xp(t)), xp(t) ∈ Dxp , (3.23)

where Wp(t) ∈ Rs×m is an unknown time-varying weight matrix satisfying ‖Wp(t)‖F ≤ w and ‖Ẇp(t)‖F ≤ ẇ

with w ∈ R+ and ẇ ∈ R+ being unknown scalars, σp : Dxp → Rs is a known basis function of the form

σp(xp(t)) = [1,σp1(xp(t)),σp2(xp(t)), . . . ,σps−1(xp(t))]T, εp : R+×Dxp → Rm is the system modeling error

satisfying ‖εp(t,xp(t))‖2 ≤ ε with ε ∈ R+ being an unknown scalar, and Dxp is a compact subset of Rnp . In

this case, the update law given by (3.14) can be replaced by, for example,

˙̂W (t) = γProj
[
Ŵ (t), σ(x(t))eT(t)PB

]
, Ŵ (0) = Ŵ0, (3.24)

to guarantee the uniform boundedness of the system error state vector e(t) and the weight error W̃ (t), where

Proj denotes the projection operator [82].
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3.3 Direct Uncertainty Minimization for Adaptive System Performance Improvement: Linear Ref-
erence Model Case

For the model reference adaptive control framework introduced in Section 3.2, we now develop the

direct uncertainty minimization mechanism to improve transient system response. In particular, we first

modify the adaptive feedback control law given by (3.13) as

ua(t) =−Ŵ T(t)σ(x(t))−φ(t), (3.25)

where φ(t) ∈ Rm is the system performance improvement term that satisfies

φ(t) = φ(0)+ k(BTB)−1BT
[(

e(t)− e(0)
)
−
∫ t

0
Are(τ)dτ

]
, (3.26)

with k ∈ R+ being a design parameter. Using (3.25), the system error dynamics in (3.18) become

ė(t) = Are(t)−BΛ

[
W̃ T(t)σ(x(t))+φ(t)

]
, e(0) = e0. (3.27)

Notice that the ideal system error dynamics have the form

ė(t) = Are(t), e(0) = e0, (3.28)

under nominal conditions with φ(t) ≡ 0 when there is no system uncertainty or control uncertainty. Moti-

vating from this standpoint, the mismatch term W̃ T(t)σ(x(t))+φ(t) in (3.27) has to be minimized during

the transient system response to improve system performance. In the next theorem, we show that the

proposed system performance improvement term given by (3.26) achieves this objective through a gradient

minimization procedure.

Theorem 3.3.1 The modification term of the adaptive feedback control law in (3.26) is the negative gradient

of the cost function given by

J (·) =
k
2

∣∣∣∣Λ1/2(W̃ T(t)σ(x(t))+φ(t)
)∣∣∣∣2

2. (3.29)
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Proof. The negative gradient of the cost function given by (3.29) with respect to φ(t) has the form

given by

−∂J (·)
∂φ(t)

= −k
[
Λ
(
W̃ T(t)σ(x(t))+φ(t)

)]
, (3.30)

which can be rewritten using (3.27) as

−∂J (·)
∂φ(t)

= k(BTB)−1BT
[
ė(t)−Are(t)

]
. (3.31)

In (3.31), note that BTB = BT
p Bp is nonsingular by its definition in Section 3.2. To construct the modification

term of the adaptive feedback control law in (3.26), let

φ̇(t) = −∂J (·)
∂φ(t)

= k(BTB)−1BT
[
ė(t)−Are(t)

]
, (3.32)

where (3.26) is a direct consequence of (3.32) using integration by parts. �

Remark 3.3.1 The proposed modification term of the adaptive feedback control law in (3.26) allows for the

system error to be shaped by suppressing the mismatch term W̃ T(t)σ(x(t))+φ(t) in (3.27) due to gradient

minimization, since it is constructed to be the negative gradient of (3.29) with respect to φ(t). Therefore,

by adjusting k in (3.26), the uncertain dynamical system response and the reference model response can be

made close to each other for all time including the transient phase. See Section 3.5 for illustrative numerical

examples.

Next, to maintain closed-loop system stability under the modified adaptive control signal given by

(3.25), we now modify the update law given by (3.14) as

˙̂W (t) = γσ(x(t))
[
eT(t)PB+ξ φ

T(t)
]
, Ŵ (0) = Ŵ0, (3.33)

with ξ = k/a and a ∈ R+ being a design parameter.

Remark 3.3.2 Note that the structure of (3.26) is much simpler than the structure of (44) in [75], in that

the former does not involve Ŵ (t) dependence and additional integration terms. Furthermore, the same
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conclusion is also true when (3.33) is compared with (31)-(33) of [75], where the later has an extra

differential equation in addition to the modification terms. Thus, the approach proposed here is much less

computationally expensive than [75, 79, 87].

Now, we are ready to state the following theorem, which shows the asymptotic stability of the pair(
e(t),φ(t)

)
as well as the Lyapunov stability of W̃ (t).

Theorem 3.3.2 Consider the uncertain dynamical system given by (3.1) subject to Assumption 3.2.1, the

reference model given by (3.15), the feedback control law given by (3.25) with (3.26) and (3.33). In addition,

let ξ be chosen such that

λmin(R)−
1
ξ

∣∣∣∣PB
∣∣∣∣2

FΛ
∗ > 0 (3.34)

holds, where
∣∣∣∣Λ∣∣∣∣F≤ Λ∗ (here Λ∗ ∈ R+ is a known, possibly conservative bound on the control effective-

ness). Then, the solution
(
e(t),φ(t),W̃ (t)

)
of the closed-loop dynamical system is Lyapunov stable for all

initial conditions and t ∈ R+, limt→∞ e(t) = 0, and limt→∞ φ(t) = 0.

Proof. To show Lyapunov stability of the solution
(
e(t),φ(t),W̃ (t)

)
, consider the Lyapunov func-

tion candidate given by

V
(
e,φ ,W̃

)
= eTPe+a−1

φ
T
φ + γ

−1tr (W̃Λ
1/2)T(W̃Λ

1/2). (3.35)

Note that V
(
0,0,0

)
= 0 and V

(
e,φ ,W̃

)
> 0 for all

(
e,φ ,W̃

)
6= (0,0,0). Differentiating (3.35) along the

closed-loop dynamical system trajectories yields

V̇
(
e(t),φ(t),W̃ (t)

)
= −eT(t)Re(t)−2ξ φ

T(t)Λφ(t)−2eT(t)PBΛ
1/2

Λ
1/2

φ(t). (3.36)

Using Young’s inequality [14] for the last term in (3.36) gives

−2eT(t)PBΛ
1/2

Λ
1/2

φ(t) ≤
∣∣−2eT(t)PBΛ

1/2
Λ

1/2
φ(t)

∣∣
≤ 1

µ
eT(t)PBΛBTPe(t)+µφ

T(t)Λφ(t). (3.37)
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Now, setting µ = ξ and using (3.37) in (3.36) yields

V̇
(
e(t),φ(t),W̃ (t)

)
≤ −eT(t)Re(t)+

1
ξ

eT(t)PBΛBTPe(t)−ξ φ
T(t)Λφ(t)

≤ −λmin(R)
∣∣∣∣e(t)∣∣∣∣22+ 1

ξ

∣∣∣∣e(t)∣∣∣∣22∣∣∣∣PB
∣∣∣∣2

FΛ
∗−ξ λmin(Λ)

∣∣∣∣φ(t)∣∣∣∣22
= −

∣∣∣∣e(t)∣∣∣∣22[λmin(R)−
1
ξ

∣∣∣∣PB
∣∣∣∣2

FΛ
∗
]
−ξ λmin(Λ)

∣∣∣∣φ(t)∣∣∣∣22. (3.38)

Using the condition (3.34) in (3.38), it follows that V̇
(
e(t),φ(t),W̃ (t)

)
≤ 0, which guarantees the Lyapunov

stability of the solution
(
e(t),φ(t),W̃ (t)

)
. Since this implies the boundedness of e(t), φ(t), and W̃ (t) for

all t ∈ R+, it follows from (3.27) and (3.32) that ė(t) and φ̇(t) are bounded for all t ∈ R+, and hence,

V̈
(
e(t),φ(t),W̃ (t)

)
is bounded for all t ∈ R+. It now follow from Barbalat’s lemma [88]

lim
t→∞
V̇
(
e(t),φ(t),W̃ (t)

)
= 0, (3.39)

which shows that limt→∞ e(t) = 0 and limt→∞ φ(t) = 0. �

From a practical standpoint, if e(t) is sufficiently small, then the design parameter ξ , which affects

both modification terms in (3.25) and (3.33) can be chosen to be small such that (3.34) holds. However,

as e(t) becomes large, then ξ may need to be increased accordingly to put more weight on minimizing the

cost function given by (3.29), and hence, to enforce system error to approximately stay in a priori given,

user-defined performance bounds. To achieve this practical objective, we can let ξ (t) = k(t)/a, where

ξ (t) ∈ [ξmin,ξmax], ξmin ∈ R+, ξmax ∈ R+, and consider the cost function given by

J (·) =
k(t)

2

∣∣∣∣Λ1/2(W̃ T(t)σ(x(t))+φ(t)
)∣∣∣∣2

2. (3.40)

Choosing the modification term in (3.25) as the negative gradient of (3.40), i.e., φ̇(t) =− ∂J (·)
∂φ(t) , and follow-

ing similar steps as highlighted in the proof of Theorem 3.3.1, it follows by integration by parts that

φ(t) = φ(0)+a
[

ξ (t)(BTB)−1BTe(t)−ξ (0)(BTB)−1BTe(0)−
∫ t

0
ξ̇ (τ)(BTB)−1BTe(τ)dτ

−
∫ t

0
ξ (τ)(BTB)−1BTAre(τ)dτ

]
. (3.41)

Notice that in this case the modified update law becomes

37



www.manaraa.com

˙̂W (t) = γσ(x(t))
[
eT(t)PB+ξ (t)φ T(t)

]
, Ŵ (0) = Ŵ0, (3.42)

and the condition (3.34) needs to be replaced with

λmin(R)−
1

ξmin

∣∣∣∣PB
∣∣∣∣2

FΛ
∗ > 0, (3.43)

where
∣∣∣∣Λ∣∣∣∣F≤ Λ∗ (here Λ∗ ∈ R+ is a known bound on the control effectiveness). In addition, we choose

ξ̇ (t) = −γξ

[
f (e)

(
ξ (t)−ξmin

)
+
(
1− f (e)

)(
ξ (t)−ξmax

)]
, ξ (0) = ξ0 ∈ [ξmin,ξmax], (3.44)

where γξ ∈ R+ and f (e) ∈ [0,1] is a continuously differentiable function such that it is close to 1 when

e(t) is sufficiently small and otherwise close to 0. It follows from (3.44) that ξ (t) ∈ [ξmin,ξmax] and ξ (t)

approaches to ξmin (resp., ξmax) when f (e) = 1 (resp., f (e) = 0). A candidate f (e) has the form f (e) =

1−
[
1− sech(c1||e(t)||P)

]c2 , ||e(t)||P ,
√

eT(t)Pe(t), where it is depicted in Figure 3.1 for c1 = 5 (this is

chosen to drive ξ (t) to ξmax if ||e(t)||P is larger than 0.5) and c2 = 10.
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Figure 3.1: A candidate f (e) for (3.44).
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3.4 Generalization to a Class of Nonlinear Reference Models

In most of the model reference adaptive control literature, it is common to design a reference model

with linear dynamics as given by (3.15). While this is practical for several applications, the control designer

may prefer to use a nonlinear reference model to better capture the desired closed-loop system performance

for many robotics and flight control applications. By adopting the tools and methods from [49, 74], we now

generalize the results in Section 3.3 such that the proposed direct uncertainty minimization adaptive control

architecture can be used to suppress the effect of the system uncertainty on the transient system response

and drive the states of a nonlinear uncertain dynamical system to the states of a class of nonlinear reference

models.

For this purpose, we recast the uncertain dynamical system given by (3.1) with a more general class

of affine-in-control nonlinear system dynamics given by

ẋp(t) = fp(xp(t))+BpΛu(t)+Bpδp(xp(t)), xp(0) = xp0, (3.45)

where xp(t) ∈ Rnp is the state vector, u(t) ∈ Rm is the control input restricted to the class of admissible

controls consisting of measurable functions such that , fp : Rnp → Rnp is a known system function that

satisfies fp(0) = 0, Bp ∈ Rnp×m is a known control input matrix, Λ ∈ Rm×m
+ ∩Dm×m is an unknown control

effectiveness matrix, δp : Rnp → Rm is the system uncertainty, and it is implicitly assumed that the required

properties for the existence and uniqueness of solutions are satisfied for the controllable uncertain dynamical

system such that (3.45) has a unique solution forward in time [80, 88].

Once again, to address command following, (3.45) can be augmented with the integrator state

dynamics given by (3.3) in the following form subject to Assumption 3.2.1

ẋ(t) = f (x(t),c(t))+BΛu(t)+BW T
p σp(xp(t)), x(0) = x0, (3.46)

where x(t), [xT
p (t),x

T
c (t)]

T ∈Rn, n = np+nc, is the augmented state vector, x0 = [xT
p0,x

T
c0]

T ∈Rn, c(t)∈Rnc

is a given bounded command, B is given by (3.6), and f : Rn×Rnc → Rn is the aggregated system function

with the integrator state dynamics that satisfies f (0,0) = 0 and

f (x(t),c(t)) =

 fp(xp(t))

Epxp(t)− c(t)

 . (3.47)
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Next, consider the nonlinear reference model given by

ẋr(t) = fr(xr(t),c(t)), xr(0) = xr0, (3.48)

where xr(t) ∈ Rn is the reference state vector and fr : Rn×Rnc → Rn is the reference model function that

satisfies fr(0,0) = 0 and

fr(xr(t),c(t)) , f (xr(t),c(t))−Bk(xr(t)), (3.49)

with k : Rn→ Rm being a feedback law such that xr(t) is bounded for all t ∈R+. In addition, it is implicitly

assumed that (3.48) has a unique solution forward in time.

Let the nominal control law be given by

un(t) = −k(x(t)), (3.50)

such that with (3.8), (3.46) can be rewritten as

ẋ(t) = f (x(t),c(t))−Bk(x(t))+BΛ
[
ua(t)+Λ

−1W T
p σp(xp(t))+(Λ−1− I)k(x(t))

]
= fr(x(t),c(t))+BΛ[ua(t)+W T

o σo(x(t))
]
, (3.51)

where Wo , [Λ−1W T
p , (Λ

−1− I)]T ∈ R(s+m)×m and σo(x(t)), [σT
p (xp(t)), kT(x(t))]T ∈ R(s+m). The system

error dynamics then follow from (3.48) and (3.51) as

ė(t) = fr(x(t),c(t))− fr(xr(t),c(t))+BΛ
[
ua(t)+W T

o σo(x(t))
]
, e(0) = e0. (3.52)

Note that there exists a known signal v(x(t),xr(t),c(t)) ∈ Rm which can be used as a feedback linearization

term such that

Are(t) = fr(x(t),c(t))− fr(xr(t),c(t))+Bv(·) (3.53)

holds, and hence, (3.52) can be written as

ė(t) = Are(t)+BΛ
[
ua(t)+W T

o σo(x(t))−Λ
−1v(·)

]
= Are(t)+BΛ

[
ua(t)+W T

σ(·)
]
, (3.54)
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with W , [W T
o , −Λ−1]T ∈ R(s+2m)×m being the unknown aggregated weight matrix and σ(·) , [σT

o (x(t)),

vT(·)]T ∈ R(s+2m) being the known aggregated basis function.

Now, consider the adaptive feedback control law given by

ua(t) =−Ŵ T(t)σ(·)−φ(t), (3.55)

where φ(t) ∈ Rm satisfies (3.41) with (3.44) and Ŵ (t) ∈ R(s+2m)×m satisfies

˙̂W (t) = γσ(·)
[
eT(t)PB+ξ (t)φ T(t)

]
, Ŵ (0) = Ŵ0. (3.56)

Using (3.55) in (3.54), it follows that the system error dynamics can be written as

ė(t) = Are(t)−BΛ
[
W̃ T(t)σ(·)+φ(t)

]
, (3.57)

where W̃ (t), Ŵ (t)−W ∈ R(s+2m)×m.

Remark 3.4.1 It should be noted that the term v(·) acts similar to a feedback linearization signal, which is

an important feature in generalizing the direct uncertainty minimization framework for the considered class

of nonlinear reference models. By appropriately selecting v(·), when possible, for the given application such

that (3.53) holds and then embedding v(·) into the unknown weight matrix W and the known basis function

σ(·), the resulting system error dynamics given by (3.57) have an identical structure to the system error

dynamics given by (3.27) in Section 3.3 for the linear reference model. It then follows that the analysis and

synthesis of the direct uncertainty minimization mechanism and stability analysis presented in Section 3.3

directly translates to the case in which nonlinear reference models are used.

Theorem 3.4.1 Consider the nonlinear uncertain dynamical system given by (3.45) subject to Assumption

3.2.1, the nonlinear reference model given by (3.48), the feedback control law given by (3.55) with (3.41),

(3.44) and (3.56). In addition, let ξmin be chosen such that (3.43) holds. Then, the solution
(
e(t),φ(t),W̃ (t)

)
of the closed-loop dynamical system is Lyapunov stable for all initial conditions and t ∈R+, limt→∞ e(t) = 0,

and limt→∞ φ(t) = 0.

Proof. As a consequence of the discussion highlighted in Remark 3.4.1, the proof is similar to the

proof of Theorem 3.3.2, and hence, is omitted. �
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3.5 Illustrative Numerical Examples

To demonstrate the efficacy of the proposed direct uncertainty minimization framework, we now

present two examples in the following two subsections. We first investigate the application to a hypersonic

vehicle using a linear reference model. The second example considers a wing rock dynamics model for an

aircraft with a nonlinear reference model, where the purpose of the nonlinear reference model is to limit the

pilot authority for envelope protection.

3.5.1 Example 1: Application to a Hypersonic Vehicle Model

For this example, we first formulate a state space model of a generic hypersonic vehicle (GHV).

Then, it is explained how the model is decoupled into longitudinal and lateral dynamics for which separate

controllers are designed. The longitudinal and lateral controllers have both a nominal and adaptive por-

tion where the simulation results illustrate both nominal control performance, a standard adaptive control

performance, and the proposed adaptive control performance.

For the configuration with an altitude of 80,000 feet and a Mach number of 6, a linearized model

under nominal conditions (δp(xp(t)) = 0 and Λ = I) is obtained in the form of (3.1) with

Ap =



−3.70×10−3 −7.17×10−1 0 −3.18×101 −2.67×10−4

−5.35×10−7 −2.39×10−1 1 −2.95×10−12 2.23×10−7

−2.79×10−5 4.26 −1.19×10−1 0 3.94×10−5

−4.76×10−8 1.31×10−13 1 −4.45×10−14 −1.33×10−11

−5.53×10−10 −5.87×103 0 5.87×103 0

5.99×10−16 −3.14×10−11 0 −3.04×10−19 −9.74×10−16

1.47×10−10 −4.45×10−6 0 0 −1.00×10−11

−5.29×10−12 3.98×10−8 0 0 1.28×10−12

8.08×10−28 2.04×10−22 1.01×10−20 1.17×10−16 −1.73×10−31

· · ·
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· · ·

−8.81×10−1 0 0 −1.77×10−15

−1.06×10−3 0 0 −3.18×10−21

−1.47 0 0 0

−1.08×10−19 4.44×10−16 −9.58×10−16 −2.58×10−18

0 0 0 −3.26×10−13

−6.97×10−2 −1.04×10−2 −9.99×10−1 −5.35×10−3

−1.31×103 −2.03 −7.54×10−3 0

2.07 −1.55×10−3 −5.31×10−2 0

−2.38×10−4 8.54×10−1 −8.84×10−3 −3.00×10−6



(3.58)

Bp =



−6.53×10−3 −1.24×10−13 −2.98×10−3

−1.33×10−4 −2.44×10−13 1.17×10−7

−1.84×10−1 −1.60×10−13 2.48×10−4

0 0 0

0 0 0

−1.40×10−16 −2.47×10−5 −2.18×10−4

−5.90×10−11 −8.04 10.3

8.56×10−14 3.17×10−2 2.85×10−1

0 0 0



(3.59)

with the state vector being defined as xp(t) = [V (t),α(t),q(t),θ(t),h(t),β (t), p(t),r(t),φ(t)]T, where V (t)

denotes the total velocity, α(t) denotes the angle of attack, q(t) denotes the pitch rate, θ(t) denotes the pitch

angle, h(t) denotes the altitude, β (t) denotes the sideslip angle, p(t) denotes the roll rate, r(t) denotes the

yaw rate, and φ(t) denotes the roll angle. The control input vector is defined as u(t) = [δe(t),δa(t),δr(t)]T,

where δe(t) denotes the elevator deflection, δa(t) denotes the aileron deflection, and δr(t) denotes the rudder

deflection. To control the model described above, we decouple the system into its longitudinal and lateral

dynamics, design nominal and adaptive controllers for the decoupled system, and then combine the separate

controllers to control the overall coupled GHV model (see Figures 3.2 and 3.3).
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3.5.1.1 Longitudinal Control Design

For the decoupled longitudinal dynamics, we consider the state vector defined as xplo(t) = [α(t),

q(t)]T, with the respective system matrices

Aplo =

−2.39×10−1 1

4.26 −1.19×10−1

 , (3.60)

Bplo =

−1.33×10−4

−1.84×10−1

 . (3.61)

LQR theory is used to design the nominal controller with Eplo = [1, 0] such that a desired angle of attack

command is followed. The controller gain matrix Klo is obtained using the highlighted augmented formu-

lation ((3.5) and (3.6)), along with the weighting matrices Qlo = diag[20000, 25000, 400000] to penalize

xlo(t) and Rlo = 12.5 to penalize ulo(t), resulting in the following gain matrix

Klo =

[
−1.65×102 −6.09×101 −1.79×102

]
. (3.62)

The solution to AT
rlo

Plo+PloArlo +R1lo = 0, where Arlo ,Alo−BloKlo, is calculated using R1lo = diag[1, 1, 100]

for both the standard adaptive control design and the proposed controller. For the proposed design, we

use (3.25), (3.41), and (3.42), and resort to (3.44) for enforcing ‖elo(t)‖Plo
≤ 0.5. Additionally, note that

ξmin = 10 is selected to satisfy (3.43) and we choose a = 2. To visualize the overall longitudinal control

design, a block diagram is provided in Figure 3.2.

Longitudinal Reference System

Uncertain System

Longitudinal Weight 

Update Law

Longitudinal Adaptive 

Control

+

+-

+

Figure 3.2: Block diagram of separated longitudinal control design.
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3.5.1.2 Lateral Control Design

The decoupled lateral dynamics follow similarly. Specifically, we consider the state vector defined

as xpla(t) = [β (t), p(t),r(t),φ(t)]T, with the respective system matrices

Apla =



−6.97×10−2 −1.04×10−2 −9.99×10−1 −5.35×10−3

−1.31×103 −2.03 −7.54×10−3 0

2.07 −1.55×10−3 −5.31×10−2 0

−2.38×10−4 8.54×10−1 −8.84×10−3 −3.00×10−6


, (3.63)

Bpla =



−2.47×10−5 −2.18×10−4

−8.04 10.3

3.17×10−2 2.85×10−1

0 0


. (3.64)

LQR theory is used to design the nominal controller with

Epla =

1 0 0 0

0 0 0 1

 (3.65)

such that a desired sideslip angle command and roll angle command are followed. The controller gain

matrix Kla is obtained using the highlighted augmented formulation along with the weighting matrices Qla =

diag[100, 100, 100, 100, 400000, 2500] to penalize xla(t) and Rla = diag[1.25, 50] to penalize ula(t),

resulting in the following gain matrix

Kla =

2.78×102 −9.08 −3.62×101 −3.15×101 1.21×102 −4.37×101

8.70×101 1.52×10−1 −2.72×101 1.30 8.74×101 1.51

 . (3.66)

The solution to AT
rla

Pla+PlaArla +R1la = 0, where Arla , Ala−BlaKla is calculated using R1la = diag[1, 1, 1, 1,

100, 100] for both the standard adaptive control design and the proposed controller. For the proposed design,

we use (3.25), (3.41), and (3.42), and resort to (3.44) for enforcing ‖ela(t)‖Pla
≤ 0.5. Additionally, note that

ξmin = 10 is selected to satisfy (3.43) and we choose a = 2. Similar to the previous section, a block diagram

is provided in Figure 3.3 to visualize the control design using the decoupled lateral dynamics to control the

overall uncertain system.
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Lateral Reference System

Uncertain System

Lateral Weight 

Update Law
Lateral Adaptive Control

+

+-

+

Figure 3.3: Block diagram of separated lateral control design.

3.5.1.3 Nominal System without Uncertainty

The longitudinal and lateral controllers are augmented and applied to the overall coupled system.

We first consider the case when there is no uncertainty in the system to show the nominal performance of

the control designs. Figure 3.4 shows the response of the nominal control performance. It can also be seen

from this figure that the error signals are not equal to zero which is expected due to the coupling effects.
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Figure 3.4: Nominal controller performance without uncertainty.

46



www.manaraa.com

3.5.1.4 Uncertainty in Control Effectiveness and Stability Derivatives

We now consider the case when the control effectiveness matrix is unknown as well as the stability

derivatives Cmα
and Cnβ

. For this purpose, we let Λ = 0.5I and we increase Cmα
and decrease Cnβ

. Figure

3.5 shows the response with the nominal control, which goes unstable.

A standard adaptive control design is first implemented. For the standard adaptive controllers, we

select the basis functions σlo(xlo(t)) = [xT
lo(t)K

T
lo, α(t)]T and σla(xla(t)) = [xT

la(t)K
T
la,β (t)]

T respectively for

the longitudinal and lateral controllers. Figures 3.6 and 3.7 show the standard adaptive control response.

Specifically, Figure 3.6 shows that for a low learning gain the system transient performance in the sideslip

angle and angle of attack is poor. In addition, the control surface deflection angles exceed practical working

limits. To improve the performance, the learning gain is increased as shown in Figure 3.7. Both the tracking

performance and the control response improve; however, as seen in the bottom part of the figure, the standard

adaptive controller is unable to enforce a pre-defined bound on the error.

To improve performance further and enforce a user-defined bound on the error, the proposed adap-

tive controller is then implemented using the same basis functions as the standard adaptive control design.

Figures 3.8 and 3.9 show the proposed controller performance using the gain varying control. Specifi-

cally, Figure 3.8 illustrates the superior tracking performance and Figure 3.9 shows the guaranteed bound

‖e(t)‖P ≤ 0.5 for both the longitudinal and lateral dynamics.
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Figure 3.6: Standard adaptive controller performance with uncertainty in Λ, Cmα
, and Cnβ

(Γlo =
I2×2 and Γla = I3×3).
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Figure 3.7: Standard adaptive controller performance with uncertainty in Λ, Cmα
, and Cnβ

(Γlo =
100I2×2 and Γla = 100I3×3).
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Figure 3.8: Proposed gain varying adaptive control performance with uncertainty in Λ, Cmα
, and Cnβ

(Γlo =
I2×2 and Γla = diag[0.1,1,1], ξ0 = 10, and a = 2).
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Figure 3.9: System error bounds and adaptation gain for Figure 3.8.
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3.5.2 Example 2: Wing Rock Dynamics with Nonlinear Reference Model

We now consider the nonlinear dynamical system representing a controlled wing rock dynamics

model given by

ẋp1(t)

ẋp2(t)

 =

0 1

0 0


xp1(t)

xp2(t)

+
0

1

(Λu(t)+δp(xp(t))
)
,

xp1(0)

xp2(0)

=

0

0

 , (3.67)

where xp1 represents the roll angle in radians and xp2 represents the roll rate in radians per second. In (3.67),

δp(xp) represents an uncertainty of the form δp(xp) =α1xp1+α2xp2+α3|xp1|xp2+α4|xp2|xp2+α5x3
p1, where

αi, i = 1, . . . ,5, are unknown parameters that are derived from the aircraft aerodynamic coefficients. For this

numerical example, we set α1 = 0.5, α2 = 1.0, α3 =−1.0, α4 = 1.0, α5 = 0.5, and Λ = 0.5.

Note that for this example, the wing rock dynamics are linear such that fp(xp(t)) in (3.45) is written

as Apxp(t). As a result, we let Ep =
[
1, 0

]
such that the roll angle command is followed and use LQR theory

with the augmented formulation ((3.5) and (3.6)), along with the weighting matrices Q = diag[50, 1,100]

and R = 1 to obtain the gain matrix K =
[
12.30, 5.06, 10.0

]
. In addition, we adopt the same nominal control

structure to limit pilot authority as in [74] to design the nonlinear reference model as

ẋr(t) =


0 1 0

0 0 0

1 0 0

xr(t)−


0

1

0

k(xr(t))+


0

0

−1

c(t), xr(t) = 0, (3.68)

with k(xr(t)) = K
[
xr1(t), xr2(t), Φ(xr(t))xr3(t)

]T, c(t) = cd(t)Φ(xr(t)), and

Φ(xr(t)) = tanh

(
5
∣∣∣|xr1(t)|−2

∣∣∣). (3.69)

Note that cd(t) is a desired command applied by the pilot and Φ(xr(t)) is a nonlinear function which limits

the pilot authority by constraining the absolute value of the roll angle to remain less than or equal to 2.

Motivated by the structure of the nonlinear reference model, the feedback linearization term is designed as

v(·) =−Ke(t)+K
[
x1(t), x2(t), Φ(x(t))x3(t)

]T−K
[
xr1(t), xr2(t), Φ(xr(t))xr3(t)

]T
, (3.70)

such that (3.53) holds. Using this, we select the basis function as
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σ(·) =
[
xp1, xp2, |xp1|xp2, |xp2|xp2, x3

p1, xT(t)KT, vT(·)
]T
, (3.71)

and we set R = I3×3 for both the standard adaptive controller and the proposed adaptive controller. Fur-

thermore, for the proposed design, we use (3.55), (3.41), and (3.56), and resort to (3.44) for enforcing

‖e(t)‖P ≤ 0.5. Additionally, note that ξmin = 1 is selected to satisfy (3.43) and we choose a = 2.

Figure 3.10 shows the standard adaptive control response. It can be seen from the figure that

even though the roll angle command is reasonably followed, the roll rate and the control response have

undesirable high-frequency content which can cause instability. In addition, as seen in the bottom part of

the figure, the standard adaptive controller is unable to enforce a pre-defined bound on the error.

To improve performance and enforce a user-defined bound on the error, the proposed adaptive

controller is then implemented. Figures 3.11 and 3.12 show the proposed controller performance using

the gain varying control. It is clear from Figure 3.11 that the proposed adaptive controller obtains superior

command following performance and Figure 3.12 shows that the system error stays in the a priori given,

user-defined performance bound.
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Figure 3.10: Standard adaptive controller performance (γ = 1).
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Figure 3.11: Proposed gain varying adaptive control performance (γ = 1 and γξ = 1, ξ0 = 1, and a = 2).
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Figure 3.12: System error bounds and adaptation gain for Figure 3.11.
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3.6 Experimental Results on Dual-Rotor Helicopter Testbed

In this section, the proposed adaptive control architecture is implemented on the Quanser AERO

testbed [50] in dual-rotor helicopter configuration. In order to proceed with the control design, we focus the

linearized model of the Quanser AERO testbed given by

Jθ θ̈(t)+Dθ θ̇(t)+Ksθ θ(t) = τθ (t), θ(0) = θ0, (3.72)

Jψ ψ̈(t)+Dψ ψ̇(t) = τψ(t), ψ(0) = ψ0. (3.73)

Here, θ(t) denotes the pitch angle in radians and ψ(t) denotes the yaw angle in radians. Moreover, Jθ stands

for the total moment of inertia about the pitch axis, Jψ stands for the total moment of inertia about the yaw

axis, Dθ stands for the damping about the pitch axis, Dψ stands for the damping about the yaw axis, and Ksθ

is the stiffness about the pitch axis. The control torques, which act on the pitch and yaw axes, satisfy

τθ (t) = Kθθ uθ (t)+Kθψuψ(t), (3.74)

τψ(t) = Kψθ uθ (t)+Kψψuψ(t). (3.75)

with uθ (t) and uψ(t) being the feedback control signals applied as motor voltages to the pitch and yaw

rotors, respectively. Here, Kθθ is the torque thrust gain from the pitch rotor, Kψψ is the torque thrust gain

from the yaw rotor, Kθψ is the cross-torque thrust gain acting on the pitch from the yaw rotor, and Kψθ is the

cross-torque thrust gain acting on the yaw pitch rotor. Finally, we also note that Jθ = 0.0219 [kgm2], Jψ =

0.0220 [kgm2], Dθ = 0.0071 [kgm2s−1], Dψ = 0.0220 [kgm2s−1], Kθθ = 0.0011 [kgm2s−2V−1], Ksθ =

0.0375 [kgm2s−2], Kψψ = 0.0022 [kgm2s−2V−1], Kψθ =−0.0027 [kgm2s−2V−1], Kθψ = 0.0021 [kgm2s−2

·V−1] are used from the Quanser AERO user manual [50].

Next, let xp(t) = [θ(t),ψ(t), θ̇(t), ψ̇(t)]T ∈ R4 and u(t) = [uθ (t),uψ(t)]T ∈ R2. Then, one can

equivalently rewrite (3.72)–(3.75) as

ẋp(t) = Apxp(t)+BpΛu(t), xp(0) = xp0, (3.76)

where the controllable matrices Ap and Bp satisfy
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Ap =



0 0 1 0

0 0 0 1

−Ksθ/Jθ 0 −Dθ/Jθ 0

0 0 0 −Dψ/Jψ


, Bp =



0 0

0 0

Kθθ/Jθ Kθψ/Jθ

Kψθ/Jψ Kψψ/Jψ


. (3.77)

Notice that we introduce Λ to (3.76), which is ideally equal to I. That is, we introduce uncertainty to Λ

in the experimental results presented below and we do not consider other system uncertainty in the form

“W T
p σp(xp(t))”.

In the selection of the gain matrix K for the nominal control design, we resort to linear quadratic

regulator theory (e.g., see [91]). Specifically, we select Ep as

Ep =

1 0 0 0

0 1 0 0

 (3.78)

such that a desired pitch command and yaw angle command can be ideally followed. The controller gain

matrix K is obtained using the highlighted augmented formulation along with the weighting matrices Q =

diag([2,2,0,0, 50,50]) to penalize x(t) and R = 0.001I2 to penalize u(t) as in [92], resulting in the following

gain matrix

K =

 82.85 −124.21 29.70 −32.29 125.18 −185.28

117.26 78.55 38.95 19.04 185.28 125.18

 , (3.79)

which has desirable phase margins of 61.9◦ and 62◦ and crossover frequencies of 5.95 rad/sec and 5.73

rad/sec for the pitch and yaw control channels respectively.

For the considered experimental set-up, a 30◦ yaw maneuver is considered as desired command

following objective, while the pitch command remains as 0◦. The yaw command is applied practically as a

filtered 30◦ square signal. From the experimental viewpoint, it should be noted that the pitch and yaw motor

voltages saturate at ±24V.
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3.6.1 Nominal Control Results without Uncertainty

We first consider the case when there is no added uncertainty in the control effectiveness matrix to

show the nominal performance of the experimental setup. In particular, Figures 3.13 and 3.14 respectively

show the nominal control performance and the system error. It can be seen from these figures that the

nominal control performs in a desirable manner and that the error signals are not equal to zero that is

expected due to possible modeling inaccuracies of the experimental setup.
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Figure 3.13: Nominal controller performance without uncertainty in the control effectiveness.
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Figure 3.14: Nominal system error without uncertainty in the control effectiveness.

55



www.manaraa.com

3.6.2 Adaptive Control Results with Uncertainty in Control Effectiveness

We next consider the case when the control effectiveness matrix is uncertain. For this purpose, we

let Λ = 0.1I2. Figures 3.15 and 3.16 show the response with the nominal control and the system error, which

goes unstable. A standard adaptive control design is now implemented to stabilize the the unstable nominal

control response. Since we only consider the uncertainty in the control effectiveness, we select the basis

function as σ(x(t)) = [xT(t)KT]T for the control design. In addition, it should be noted that without loss

of generality, a projection based weight update law is used which adds additional robustness owing to the

modeling inaccuracies of the Quanser AERO testbed. The projection bounds are set elementally for the

considered uncertainty, W = Λ−1− I2, as 4.5≤ [Ŵ (t)]i,i ≤ 13.5, i = 1,2 (see Appendix A for details on the

projection operator). Moreover, we use R = 1.5I6×6 to calculate P from (3.16) for the considered Ar matrix.

Figures 3.17 and 3.18 show the standard adaptive control response with a low learning gain of γ = 0.1. It

can be seen from Figure 3.17, the system, while stable in the presence of the considered uncertainty, has

poor transient performance in the yaw and pitch response. In addition, as shown in Figure 3.18, the system

error exceeds the performance bound of ε = 0.5. To improve the performance, the learning gain is increased

to γ = 10 as shown in Figures 3.19 and 3.20. As seen in Figure 3.19, the tracking performance improves and

Figure 3.20 shows the system error is now contained within the performance bound. In addition, comparison

of Figures 3.18 and 3.20 shows improved adaptation in the adaptive control signal and the weight estimates

for the increased learning gain. At this point, it should be noted that the performance obtained for the

increased learning gain (shown in Figures 3.19 and 3.20) is only obtained by judiciously increasing the

learning gain, and hence, is not guaranteed and is subject to change if the system uncertainties change.

To improve performance and enforce the user-defined bound on the error, the proposed adaptive

controller is then implemented using the same basis function, projection bounds, and P solution as the

standard adaptive control design. The learning gain is set to γ = 0.1 as in the low gain learning gain case of

the standard adaptive control design previously discussed. This allows for better comparison to the standard

adaptive control which was unable to enforce the user-defined performance bound shown in Figures 3.17 and

3.18. The additional parameters for the proposed control are selected as ξmin = 0.1, ξmax = 100, a = 2, and

γξ = 100 such that the condition given by (3.43) is satisfied. Figures 3.21–3.23 show the proposed controller

performance using the gain varying control. Specifically, Figure 3.21 shows that the tracking performance

is better as compared to the standard adaptive control cases, and Figure 3.22 shows the guaranteed bound
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Figure 3.15: Nominal controller performance with uncertainty in the control effectiveness.
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Figure 3.16: Nominal system error with uncertainty in the control effectiveness.

‖e(t)‖P ≤ 0.5 is enforced by the error dependent gain term ξ (t). In addition, Figure 3.23 shows a steadier

adaptive control response as compared to the responses in Figures 3.18 and 3.20 for the standard adaptive

control cases.
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Figure 3.17: Standard adaptive control performance with low learning gain.

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6 ||e(t)||P
ǫ

0 5 10 15 20 25 30 35
-200

-100

0

100

200

u
a
(t
)

uaθ

uaψ

0 5 10 15 20 25 30 35

t (sec)

0

5

10

15

Ŵ
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Figure 3.18: System error, adaptive control signal, and weight estimate for low learning gain.
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Figure 3.19: Standard adaptive control performance with increased learning gain.
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Figure 3.20: System error, adaptive control signal, and weight estimate for increased learning gain.
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Figure 3.21: Proposed control tracking performance.
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Figure 3.22: System error and adaptation gain for proposed adaptive control.

3.7 Conclusion

We proposed a direct uncertainty minimization approach that uses modification terms in the adaptive

control law and the update law to suppress the effect of system uncertainty on the transient system response

through a gradient minimization procedure for improved system performance. In addition, the use of a
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Figure 3.23: Adaptive control signal and weight estimates for proposed adaptive control.

varying gain on the modification term was shown to keep the system error approximately within a priori

given, user-defined error performance bounds. The proposed approach was then generalized to incorporate

a nonlinear reference model to better capture the desired closed-loop system performance for a class of

nonlinear uncertain dynamical systems. Two illustrative numerical examples and experimental results

were included to demonstrate the efficacy of the proposed adaptive control framework. Future research

will include generalizations of the proposed framework to output feedback adaptive control as well as

applications to large-scale dynamical systems.
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CHAPTER 4: COMPUTING STABILITY LIMITS OF ADAPTIVE CONTROL LAWS WITH

HIGH-ORDER ACTUATOR DYNAMICS1

A challenge in the design of adaptive control laws for uncertain dynamical systems is to achieve sys-

tem stability and a prescribed level of command following performance in the presence of actuator dynamics.

It is well-known that if the actuator dynamics do not have sufficiently high bandwidth, their presence cannot

be practically neglected in the design since they limit the achievable stability of adaptive control laws. In

this paper, we consider the design of model reference adaptive control laws for uncertain dynamical systems

in the presence of high-order actuator dynamics. Specifically, a linear matrix inequalities-based hedging

approach is proposed, where this approach modifies the ideal reference model dynamics to allow for correct

adaptation that is not affected by the presence of actuator dynamics. The stability of the modified reference

model is then computed using linear matrix inequalities, which reveals the fundamental stability interplay

between the parameters of the actuator dynamics and the allowable system uncertainties. In addition, we

analyze the convergence properties of the modified reference model to the ideal reference model. The

presented theoretical results are finally illustrated through a numerical example.

4.1 Introduction

Mathematical models used in feedback control design are often based on first principles of physics

and are derived using fundamental physical laws. However, due to system complexity, idealized assumptions

and simplifications, system uncertainty, and exogenous disturbances, first principle models are often not

accurate to capture the exact physical phenomena that undergo spatial and temporal evolution. To this

end, adaptive control laws have the capability to guarantee system stabilization and a prescribed level of

command following performance for dynamical systems subject to inaccurate mathematical models and

degraded modes of operation [5–7, 93]. Yet, one of the importance challenges in the design of adaptive con-

trol laws for uncertain dynamical systems is to achieve system stability and a prescribed level of command

1This chapter has been submitted to the journal Automatica for possible publication.
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following performance in the presence of actuator dynamics. It is well-known that if the actuator dynamics

do not have sufficiently high bandwidth, their presence cannot be practically neglected in the design since

they limit the achievable stability of adaptive control laws.

In the literature, while there exist a few approaches to the design of adaptive control laws in the

presence of actuator dynamics (see, for example, [57, 94] and references therein), the constructive nature

of these approaches couple the uncertain dynamical systems with their actuator dynamics, which can result

in imprecise estimation of the system uncertainties for the suppression of their effects — with a notable

exception called the hedging method [30, 31, 33]. In particular, the hedging method enables adaptive control

laws to be designed such that their capability to estimate the system uncertainties are not affected by the

presence of actuator dynamics. This is accomplished by modifying the ideal reference model dynamics with

a hedge signal such that standard closed-loop system dynamics are obtained to allow for correct adaptation

even in the presence of actuator dynamics. Yet, until our recent work [95] focusing on the presence of

first-order actuator dynamics, it has not been analyzed that this modification to the ideal reference model

dynamics does not yield to unbounded reference model responses. Although this is an important result, it is

known that many actuator dynamics utilized in real-world application do not necessarily follow a first-order

model.

In this paper, we consider the design of model reference adaptive control laws with projection

operator for uncertain dynamical systems in the presence of high-order actuator dynamics, unlike our

previous results documented in [95]. To this end, a linear matrix inequalities-based hedging approach is

proposed. Specifically, this approach modifies the ideal reference model dynamics to allow for correct

projection operator-based adaptation that is not affected by the presence of high-order actuator dynamics. To

compute the stability limit of the modified reference model, we utilize linear matrix inequalities, where this

computation reveals the fundamental stability interplay between the parameters of the actuator dynamics and

the allowable system uncertainties through the selection of the projection operator bounds. Moreover, we

analyze, for the first time, the distance between the modified reference model trajectories and ideal reference

model trajectories, and determine a condition for which these trajectories converge to each other. This is

another significant departure from the results documented in not only [95] but also [30, 31, 33]. Finally,

our results do not adopt small-gain type arguments as in [57, 94] in the stability analysis, where it is known

that these small-gain type approaches tend to be more conservative than linear matrix inequalities-based
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approaches (see, for example, [96]). The presented theoretical results of our paper are further illustrated

through a numerical example.

The notation used throughout this paper is fairly standard. Specifically, R denotes the set of real

numbers, Rn denotes the set of n×1 real column vectors, Rn×m denotes the set of n×m real matrices, R+

(resp. R+) denotes the set of positive (resp., nonnegative) real numbers, Rn×n
+ (resp., Rn×n

+ ) denotes the set

of n×n positive-definite (resp. nonnegative-definite) real matrices, (·)T denotes the transpose operator, (·)−1

denotes the inverse operator, tr(·) denotes the trace operator, diag(a) denotes the diagonal matrix with the

vector a on its diagonal,
∣∣∣∣·∣∣∣∣2 denotes the Euclidian norm,

∣∣∣∣·∣∣∣∣F denotes the Frobenius matrix norm, [A]i j

denotes the ij-th entry of the real matrix A ∈ Rn×m, λmin(A) (resp., λmax(A)) denotes the minimum (resp.,

maximum) eigenvalue of the real matrix A ∈ Rn×n, and “,” denotes the equality by definition.

4.2 Mathematical Preliminaries

In this section, we introduce some fundamental results needed to develop the main results of this

paper. We begin with the definition of the projection operator [6].

Definition 4.2.1 Consider a convex hypercube in the form Ω0 =
{

θ0 ∈ Rn : (θ min
0i ≤ θ0i ≤ θ max

0i )i=1,2,...,n
}

,

where Ω0 ∈ Rn, and θ min
0i and θ max

0i respectively represent the minimum and maximum bounds for the

ith component of the n-dimensional parameter vector θ0 (we set θ min
0i = −θ max

0i for the results of this

paper without loss of generality). Furthermore, for a sufficiently small positive constant ε0, consider

another hypercube in the form Ωε =
{

θ0 ∈ Rn : (θ min
0i + ε0 ≤ θ0i ≤ θ max

0i − ε0)i=1,2,...,n
}

, where Ωε ⊂Ω. The

projection operator Proj : Rn×Rn→ Rn is then defined component-wise by

Proj(θ ,y),



(
θ max

0i −θ0i
ε0

)
yi, if θ0i > θ max

0i − ε0 and yi > 0,(
θ0i−θ min

0i
ε0

)
yi, if θ0i < θ min

0i + ε0 and yi < 0,

yi, otherwise,

where y ∈ Rn.

Remark 4.2.1 Based on Definition 4.2.1 and θ ∗0 ∈Ωε , one can show the inequality (θ0 −θ ∗0 )
T (Proj(θ0,y)

−y) ≤ 0, holds for θ0 ∈ Ω0 and y ∈ Rn [6]. We use a generalization of this definition to matrices as

Projm(Θ,Y )=
(
Proj(col1(Θ),col1(Y )) . . . ,Proj(colm(Θ),colm (Y ))

)
, where Θ∈Rn×m, Y ∈Rn×m, and coli(·)
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denotes the i-th column operator. In this case, for a given matrix Θ∗, it follows that tr
[
(Θ−Θ∗)T(Projm(Θ,Y )

−Y )
]
= ∑

m
i=1

[
coli(Θ−Θ∗)T(Proj(coli(Θ),coli(Y ))− coli(Y ))

]
≤ 0, holds.

We now briefly overview the standard model reference control problem in the absence of actuator

dynamics. Consider the uncertain dynamical system given by

ẋ(t) = Ax(t)+Bu(t), x(0) = x0, (4.1)

where x(t) ∈ Rn is the state vector available for feedback, u(t) ∈ Rm is the control input restricted to the

class of admissible controls consisting of measurable functions, A ∈ Rn×n is an unknown system matrix,

B ∈ Rn×m is a known input matrix, and the pair (A,B) is controllable. In addition, consider the reference

model capturing a desired, ideal closed-loop dynamical system performance

ẋr(t) = Arxr(t)+Brc(t), xr(0) = xr0, (4.2)

where xr(t)∈Rn is the reference state vector, c(t)∈Rm is a given uniformly continuous bounded command,

Ar ∈Rn×n is the Hurwitz reference model matrix, and Br ∈Rn×m is the command input matrix. The objective

of the model reference adaptive control problem is to construct an adaptive feedback control law u(t)

such that the state vector x(t) asymptotically follows the reference state vector xr(t). We now make the

following assumption, which is standard in the model reference adaptive control literature and is known as

the matching condition.

Assumption 4.2.1 There exists an unknown matrix K1 ∈ Rm×n and a known matrix K2 ∈ Rm×m such that

Ar = A−BK1 and Br = BK2 hold.

Remark 4.2.2 While Assumption 4.2.1 is a widely-adopted standard assumption in the model reference

adaptive control literature [5–7], several works have considered the case in which the uncertainties are

unmatched, see for example, [13–19] and references therein. The results of this paper can be applied to

those results.

It follows from Assumption 4.2.1 that (4.1) can be written as

ẋ(t) = Arx(t)+Brc(t)+B
[
u(t)+W T

1 x(t)−K2c(t)
]
, (4.3)

where W1 , KT
1 ∈ Rn×m is unknown. Now, let the adaptive feedback control law be given by
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u(t) = −Ŵ T
1 (t)x(t)+K2c(t), (4.4)

where Ŵ1(t) ∈ Rn×m is the estimate of W1 satisfying the weight update law

˙̂W1(t) = γ1Projm
[
Ŵ1(t), x(t)eT(t)PB

]
, Ŵ1(0) = Ŵ10, (4.5)

with γ1 ∈ R+ being the learning rate, e(t) , x(t)− xr(t) being the system error state vector, and P ∈ Rn×n
+

being the solution of the Lyapunov equation given by

0 = AT
r P+PAr +R, (4.6)

R ∈ Rn×n
+ . Note that since Ar is Hurwitz, it follows from the converse Lyapunov theory [80] that there

exists a unique P satisfying (4.6) for a given R. In addition, the projection bounds are defined such that∣∣[Ŵ1(t)]i j
∣∣≤ Ŵ1,max,i+( j−1)n, for i = 1, ...,n and j = 1, ...,m, where Ŵ1,max,i+( j−1)n ∈R+ denotes (symmetric)

element-wise projection bounds. Note that the results of this paper can be trivially applied to the case when

asymmetric projection bounds are considered.

Now, using (4.4) in (4.3) along with (4.2), the system error dynamics can be written as

ė(t) = Are(t)−BW̃ T
1 (t)x(t), e(0) = e0, (4.7)

where W̃1(t), Ŵ1(t)−W1 ∈ Rn×m.

Remark 4.2.3 The weight update law given by (4.5) can be derived using Lyapunov analysis by considering

the Lyapunov function candidate given by (see, for example, [5–7])

V(e,W̃1) = eTPe+ γ
−1
1 tr W̃ T

1 W̃1. (4.8)

Note that V(0,0) = 0 and V(e,W̃1) > 0 for all (e,W̃1) 6= (0,0). Now, differentiating (4.8) yields V̇(e(t),

W̃1(t)) ≤ −eT(t)Re(t) ≤ 0, which guarantees that the system error state vector e(t) and the weight error

W̃1(t) are Lyapunov stable, and hence, are bounded for all t ∈ R+. Since x(t) is bounded for all t ∈ R+, it

follows from (4.7) that ė(t) is bounded, and hence, V̈(e(t),W̃1(t)) is bounded for all t ∈ R+. It then follows

from Barbalat’s lemma that limt→∞ V̇
(
e(t),W̃1(t)

)
= 0, which consequently shows that e(t)→ 0 as t→∞. It
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should also be noted that owing to the use of the projection operator in the weight update law given by (4.5),

the above discussion can be readily extended to the case of time-varying uncertainties (i.e., W1(t) ∈ Rn×m

with ‖W1(t)‖F ≤ w and
∥∥Ẇ1(t)

∥∥
F ≤ ẇ, w ∈ R+, ẇ ∈ R+) are considered. In this case, the boundedness of

the pair (e(t),W̃1(t)) follows using (4.8), where the bound on e(t) can be adjusted by the user to achieve a

desired level of performance [6].

4.3 Model Reference Adaptive Control with High-Order Actuator Dynamics

The standard model reference adaptive control formulation overviewed in the previous section has

the capability to suppress the effect of any system uncertainties to achieve desirable tracking performance

specifications, when the actuator dynamics are not present in the closed-loop dynamical system. Building on

the results of the previous section, we now present a new model reference adaptive control design procedure

to ensure guaranteed stability and performance in the presence of high-order actuator dynamics. Specifically,

consider the uncertain dynamical system subject to actuator dynamics given by

ẋ(t) = Ax(t)+Bv(t), x(0) = x0, (4.9)

where v(t) ∈ Rm is the actuator output of the actuator dynamics GA given by

ẋc(t) = Fxc(t)+Gu(t), xc(0) = xc0,

v(t) = Hxc(t), (4.10)

with xc(t) ∈ Rp being the actuator state vector, G ∈ Rp×m being the actuator input matrix, H ∈ Rm×p being

the actuator output matrix, and F ∈ Rp×p being Hurwitz such that there exists S ∈ Rp×p
+ that satisfies 0 =

FTS+SF + I.

By adding and subtracting Bu(t) and using Assumption 4.2.1, (4.9) can be rewritten as

ẋ(t) = Arx(t)+Brc(t)+B
[
u(t)+W T

1 x(t)−K2c(t)
]
+B
[
v(t)−u(t)

]
. (4.11)

Based on the hedging approach2, we now consider the modified reference model dynamics given by

2It is known that in the presence of actuator dynamics, not all reference model trajectories can be tracked. Motivated from
this, the hedging method introduces the deficit term “B[v(t)−u(t)]” to the ideal reference model trajectories such that the resulting
reference model can be tracked by the uncertain dynamical system. For more details, we refer to [30, 31, 33].
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ẋr(t)=Arxr(t)+Brc(t)+B
[
v(t)−u(t)

]
, xr(0) = xr0. (4.12)

Now, by considering the uncertain dynamical system subject to actuator dynamics given by (4.11), with the

adaptive feedback control law given by (4.4) and (4.5), and the modified reference model given by (4.12),

the system error dynamics between (4.11) and (4.12) is given in the form of (4.7). This is the result of

introducing the hedging signal B
[
v(t)−u(t)

]
to the ideal reference model dynamics.

Assumption 4.3.1 The matrix

A(Ŵ1(t),GA) =

Ar +BŴ T
1 (t) BH

−GŴ T
1 (t) F

 , (4.13)

is quadratically stable.

Remark 4.3.1 By definition, (4.13) is quadratically stable if and only if there exists a P > 0 such that

AT(Ŵ1(t),GA)P +PA(Ŵ1(t),GA) < 0 holds [97, 98]. We can use linear matrix inequalities (LMIs) to

satisfy the quadratic stability of (4.13) by following a similar procedure documented in our recent works

[95]. For this purpose, let W 1i1 ,...,ir
∈ Rn×m be defined as

W 1i1 ,...,ir
=



(−1)i1Ŵ1,max,1 (−1)i1+nŴ1,max,1+n . . . (−1)i1+(m−1)nŴ1,max,1+(m−1)n

(−1)i2Ŵ1,max,2 (−1)i2+nŴ1,max,2+n . . . (−1)i2+(m−1)nŴ1,max,2+(m−1)n

...
...

. . .
...

(−1)inŴ1,max,n (−1)i2nŴ1,max,2n . . . (−1)imnŴ1,max,mn


, (4.14)

where ir ∈ {1,2}, r ∈ {1, ...,2mn}, such that W 1i1 ,...,ir
represents the corners of the hypercube defining the

maximum variation of Ŵ1(t). Utilizing the results in [96, 99], if

Ai1,...,ir =

Ar +BW T
1i1 ,...,ir

BH

−GW T
1i1 ,...,ir

F

 , (4.15)

which depends affinely on the parameters W 1i1 ,...,ir
, satisfies the matrix inequality

AT
i1,...,irP+PAi1,...,ir < 0, P = PT > 0, (4.16)
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for all permutations of W 1i1 ,...,ir
, and hence, is quadratically stable at all corners of the hypercube, then

(4.13) is quadratically stable. From a practical standpoint, there exist actuator dynamics fast enough such

that (4.16) is satisfied, and hence, we can cast it as a convex optimization problem and solve it using LMIs.

A sufficient condition is provided in Lemma 4.3.1 to support this point.

Now that the quadratic stability of (4.13) in Assumption 4.3.1 can be determined through the use of

LMIs, we present the following proposition.

Proposition 4.3.1 Consider the uncertain dynamical system given by (4.9) subject to Assumption 4.2.1, the

reference model given by (4.12), the actuator dynamics given by (4.10), and the adaptive feedback control

law given by (4.4) along with the update law (4.5). Under Assumption 4.3.1, the solution (e(t),W̃1(t),xr(t),

v(t)) of the closed-loop dynamical system are bounded and limt→∞ e(t) = 0. In addition, the system error

dynamics satisfy the transient performance bound given by

‖e(t)‖L∞
≤

( 1
λmin(P)

(
λmax(P)‖e(0)‖2

2 + γ
−1
1 ‖W̃1(0)‖2

F

)) 1
2
. (4.17)

Proof. To show Lyapunov stability and guarantee boundedness of the system error and the weight

error, consider the Lyapunov function candidate given by (4.8). Differentiation of (4.8) yields V̇
(
e(t),W̃1(t)

)
≤ −eT(t)Re(t) ≤ 0, which guarantees the Lyapunov stability, and hence, the boundedness of the solution(
e(t),W̃1(t)

)
.

To show the boundedness of xr(t) and xc(t), consider the reference model (4.12) and the actuator

dynamics (4.10) subject to (4.4) as

ẋr(t) = Arxr(t)+B
[
Hxc(t)+Ŵ T

1 (t)e(t)+Ŵ T
1 (t)xr(t)

]
, (4.18)

ẋc(t) = Fxc(t)−GŴ T
1 (t)xr(t)−GŴ T

1 (t)e(t)+GK2c(t), (4.19)

where (4.18) and (4.19) can be rewritten in compact form as

ξ̇ (t) = A(Ŵ1(t),GA)ξ (t)+ω(·), (4.20)
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with ξ (t) = [xT
r (t),x

T
c (t)]

T and

ω(·) =

 BŴ T
1 (t)e(t)

−GŴ T
1 (t)e(t)+GK2c(t)

 . (4.21)

Note that ω(·) in (4.20) is a bounded perturbation as a result of Lyapunov stability of the pair (e(t),W̃1(t)).

Now, it follows that since ω(·) is bounded and A(Ŵ1(t),GA) is quadratically stable by Assumption 4.3.1

(satisfied by LMIs in Remark 4.3.1), then xr(t) and xc(t) are also bounded [88]. This further implies that the

actuator output v(t) is bounded.

To show limt→∞ e(t) = 0, note that x(t) is bounded as a consequence of the boundedness of e(t)

and xr(t). It now follows from (4.7) that ė(t) is bounded, and hence, V̈(e(t),W̃1(t)) is bounded. As a

consequence of the boundedness of V̈(e(t),W̃1(t)) and Barbalat’s lemma [88], limt→∞ V̇
(
e(t),W̃1(t)

)
= 0,

and hence, limt→∞ e(t) = 0.

Finally, because V̇(e(t),W̃1(t)) ≤ 0 for t ∈ R+, this implies that V(e(t),W̃1(t)) ≤ V(e(0),W̃1(0)).

Using the inequalities λmin(P)‖e(t)‖2
2 ≤ V(e(t),W̃1(t)) and V(e(0),W̃1(0)) ≤ λmax(P)‖e0‖2

2 + γ
−1
1 ‖W̃10‖2

F

results in

‖e(t)‖2 ≤
( 1

λmin(P)

(
λmax(P)‖e(0)‖2

2 + γ
−1
1 ‖W̃1(0)‖2

F

)) 1
2
. (4.22)

Moreover, since ‖ · ‖∞ ≤ ‖ ·‖2, and this bound is uniform, then (4.22) yields

‖eτ(t)‖L∞
≤

( 1
λmin(P)

(
λmax(P)‖e(0)‖2

2 + γ
−1
1 ‖W̃1(0)‖2

F

)) 1
2
, (4.23)

such that (4.17) is a direct consequence of (4.23) since it holds uniformly in τ . �

Once again, we note that through the use of the LMI analysis highlighted in Remark 4.3.1, the

quadratic stability condition in Assumption 4.3.1 can be achieved for given actuator dynamics, GA, and

projection enforced bounds on system uncertainties, Ŵ1,max,i+( j−1)n, such that Proposition 4.3.1 holds. From

a practical understanding, it is expected that there is a fundamental tradeoff between the allowable system

uncertainties and the actuator dynamics. This being that if the system uncertainties are large, the actuator

dynamics need to be fast enough such that close suppression of the system uncertainties through the control

channel is possible, whereas if the the system uncertainties are small, the actuator dynamics can be slower
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and still satisfy the quadratic stability condition in Assumption 4.3.1. To rigorously demonstrate this

practical intuition, in what follows we provide a lemma which uses the following assumption on the form of

the actuator dynamics which holds for a broad set of realistic actuators.

Assumption 4.3.2 The static gain of the actuator dynamics given by (4.10) is unity (i.e., −HF−1G = I)

and F is in Jordan form with the algebraic multiplicity and geometric multiplicity being equal (i.e., F is

diagonal).

With the eigenvalues of F along the diagonal, scaling up all the eigenvalues is the mathematical

equivalent of making the actuator faster, and hence, we let F , kF0, where k scales the eigenvalues of an

initial actuator state matrix F0 , diag([F011 ,F022 , ...,F0pp ]), with −F0ii ∈ R+ for i = 1, · · · , p. In addition, we

let H = kH0 and G = G0 such that the unity static gain of Assumption 4.3.2 is satisfied, where H0 and G0

are the initial actuator output and input matrices. Furthermore, since F is in Jordan form, it follows from

Assumption 4.3.2 and 0 = FTS+ SF + I, that S = k−1diag
([
−F−1

011
,−F−1

022
, ...,−F−1

0pp

])
/2 , k−1S0, where

0 = FT
0 S0 +S0F0 + I and S0 ∈ Rp×p

+ .

Now, the following lemma provides a sufficient condition to ensure the quadratic stability of As-

sumption 4.3.1. For this purpose, let ω ∈ R+ be such that
∥∥Ŵ1(t)

∥∥
F ≤ ω and let k ∈ R+ be such that

k ≤ k.

Lemma 4.3.1 Consider the actuator dynamics given by (4.10) subject to Assumption 4.3.2 and the param-

eter dependent matrix AT(Ŵ1(t),GA) given by (4.13). For the positive definite matrix P given by

P =

 P −PBHF−1

−F−THTBTP αS+F−THTBTPBHF−1

 , (4.24)

with α ∈ R+ being a free parameter, there exists a set κ1 ,
{

k : k ≤ k
} ⋃ {

Ŵ1(t) :
∥∥Ŵ1(t)

∥∥
F ≤ ω

}
, such

that for any arbitrary element in the set κ1, AT(Ŵ1(t),GA)P +PA(Ŵ1(t),GA) < 0 is satisfied, such that

(4.13) is quadratically stable in the set κ1.

Proof. We first note that the positive-definiteness of P follows from the positive-definiteness of P,

which is a solution of the Lyapunov equation given by (4.6) with R = I, and the positive-definiteness of the

Schur complement of (4.24) given by

71



www.manaraa.com

S1 = αS+F−THTBTPBHF−1−F−THTBTP(P)−1PBHF−1

= αS > 0. (4.25)

Now, for the positive definite matrix P , quadratic stability of A(Ŵ1(t),GA) follows if the matrix given by

Q = AT(Ŵ1(t),GA)P+PA(Ŵ1(t),GA)

=

−I −AT
r PBHF−1−αŴ1(t)GTS

∗ −αI

 , (4.26)

is negative definite. First, note that −I is clearly a negative-definite matrix. Second, it follows that if the

Schur complement of (4.26) is negative definite, quadratic stability of A(Ŵ1(t),GA) holds. That is, we

consider the Schur complement of (4.26) as

S2 = −αI +F−THTBTPArAT
r PBHF−1 +α

2SGŴ T
1 (t)Ŵ1(t)GTS

+αF−THTBTPArŴ1(t)GTS+αSGŴ T
1 (t)A

T
r PBHF−1. (4.27)

Note that S2 < 0 if and only if xTS2x < 0 for any vector x 6= 0. Thus, we can write

xTS2x ≤ −α ‖x‖2
2 +
∥∥AT

r PBHF−1x
∥∥2

2 +α
2∥∥Ŵ1(t)GTSx

∥∥2
2

+2α
∥∥AT

r PBHF−1x
∥∥

2

∥∥Ŵ1(t)GTSx
∥∥

2 . (4.28)

Now, using Young’s inequality [14] on the last term yields

xTS2x ≤ −α ‖x‖2
2 +2

∥∥AT
r PBHF−1x

∥∥2
2 +2α

2∥∥Ŵ1(t)GTSx
∥∥2

2 . (4.29)

Letting m1 , 2
∥∥AT

r PB
∥∥2

F, it follows from (4.29) that

xTS2x ≤ −α ‖x‖2
2 +m1 ‖H‖2

F

∥∥F−1∥∥2
F ‖x‖

2
2 +α

2∥∥Ŵ1(t)
∥∥2

F ‖S‖
2
F ‖G‖2

F ‖x‖2
2

= −‖x‖2
2

[
α−m1 ‖H0‖2

F

∥∥F−1
0

∥∥2
F−α

2∥∥Ŵ1(t)
∥∥2

F k−2 ‖S0‖2
F ‖G0‖2

F

]
. (4.30)

Letting α >m1 ‖H0‖2
F

∥∥F−1
0

∥∥2
F in (4.30), it follows that xTS2x< 0 when the term α2

∥∥Ŵ1(t)
∥∥2

F k−2 ‖S0‖2
F ‖G0‖2

F

is sufficiently small. This is the case if k is sufficiently large or
∥∥Ŵ1(t)

∥∥
F is sufficiently small, and hence,

(4.27) is negative-definite when k is sufficiently large or ω is sufficiently small, which yields the quadratic

stability of (4.13). Finally, since there exist a (sufficiently large) k or a (sufficiently small) ω such that (4.13)

is quadratically stable, the existence of set κ1 is immediate. �
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Remark 4.3.2 Several things should be noted about the results of Lemma 4.3.1. First of all, it demonstrates

the fundamental tradeoff between the allowable system uncertainties and the actuator dynamics as alluded

to earlier in this section. This being that as the allowable system uncertainties get larger, the speed of the

actuator needs to increase to ensure quadratic stability of A(Ŵ1(t),GA). It also informs from a practical

standpoint that there exists a feasible starting point at which an LMI search can begin to compute the

minimum feasible boundary. Lastly, even though the assumption of unity static gain is used to find this

feasible starting point, an extension of the LMI search can include the effect of non-unity static gain actuator

dynamics as it searches for the feasible limit.

Remark 4.3.3 Similar to the comment in Remark , the results in this section can be readily extended to

the case in which the system uncertainties are time-varying (i.e., W1(t) ∈ Rn×m with ‖W1(t)‖F ≤ w and∥∥Ẇ1(t)
∥∥

F ≤ ẇ, w ∈ R+, ẇ ∈ R+). While the result in Proposition 4.3.1 changes to the boundedness of the

pair (e(t),W̃1(t)) in this case, the quadratic stability condition given by (4.13) and satisfied through LMIs

remains exactly the same for time-varying uncertainties. In addition, the feasibility result of Lemma 4.3.1

does not change.

4.4 Convergence Analysis

Stability of the overall closed-loop dynamical system for the proposed model reference adaptive

control architecture with the LMI-based hedging approach is analyzed in the previous section. However,

it is only shown that the distance between the uncertain dynamical system given by (4.9) and the modified

reference model given by (4.12) asymptotically vanishes, where the modified reference model no longer

captures the ideal closed-loop dynamical system behavior due to the presence of the term “B[v(t)−u(t)]” in

(4.12). To this end, we now analyze the distance between the uncertain dynamical system and the ideal (i.e.,

unmodified reference model). Since the ideal reference model given by (4.2) is modified in the Section 4.3.3,

such that xr(t) denotes the modified reference model state, we restate the ideal reference model dynamics

with different notation as

ẋri(t) = Arxri(t)+Brc(t), xri(0) = xr0, (4.31)

where xri(t) ∈ Rn denotes the ideal reference state vector.
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We begin by defining eref(t), xr(t)−xri(t) as the error between the modified reference model given

by (4.12) and the ideal reference model now given by (4.31). Note that

‖x(t)− xri(t)‖L∞
= ‖e(t)+ eref(t)‖L∞

≤ ‖e(t)‖L∞
+‖eref(t)‖L∞

, (4.32)

which implies that by making the bounds on both of the error signals (i.e., ‖e(t)‖L∞
and ‖eref(t)‖L∞

) small,

the distance between the uncertain dynamical system and the ideal reference model becomes small for all

time.

Remark 4.4.1 Under a realistic assumption that e(0) can be chosen sufficiently small and/or zero, Propo-

sition 4.3.1 shows that ‖e(t)‖L∞
can be made small by judiciously increasing the learning gain γ1.

The next proposition shows that ‖eref(t)‖L∞
can be made small if the actuator dynamics are fast,

which is also expected by intuition.

Proposition 4.4.1 Consider the modified reference model given by (4.12), the ideal reference model given

by (4.31), the actuator dynamics given by (4.10) subject to Assumption 3, and the adaptive feedback control

law given by (4.4). If (k,ω) ∈ κ1, then an upper bound for ‖eref(t)‖L∞
is given by

‖eref(t)‖L∞
≤

√
ρ

(
5ψ2

4η2k2

)
, (4.33)

where η ∈ R+, ρ , λmax(P)
λmin(P) , and ψ , 2α ‖S0G0‖F ω∗1 .

Proof. Making use of the arguments presented in [100], we begin by considering the reference

model error dynamics that follow from the modified reference model (4.12) and the ideal reference model

(4.31) subject to the actuator dynamics (4.10) and the feedback control law (4.4) as

ėref(t) = Areref(t)+B[v(t)−u(t)]

= Areref(t)+B
[
Hxc(t)+Ŵ T

1 (t)e(t)+Ŵ T
1 (t)eref(t)+Ŵ T

1 (t)xri(t)−K2c(t)
]
. (4.34)
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In addition, the actuator dynamics (4.10) subject to (4.4) can be written as

ẋc(t) = Fxc(t)−GŴ T
1 (t)e(t)−GŴ T

1 (t)eref(t)−GŴ T
1 (t)xri(t)+GK2c(t). (4.35)

It follows that (4.34) and (4.35) can be written in compact form as

˙̄e(t) = A(Ŵ1(t),GA)ē(t)+Bω1(·), (4.36)

with ē(t) = [eT
ref(t),x

T
c (t)]

T, B = [BT,−GT]T, and ω1(·) = Ŵ T
1 (t)e(t)+Ŵ T

1 (t)xri(t)−K2c(t).

Note that ω1(·) in (4.36) is bounded as a result of Proposition 4.3.1 and the boundedness of the ideal

reference model (4.31). Furthermore, it follows that A(Ŵ1(t),GA) is quadratically stable for (k,Ŵ1(t)) ∈ κ1

by Lemma 4.3.1 such that AT(Ŵ1(t),GA)P +PA(Ŵ1(t),GA) < 0 holds, where P is given by (4.24). This

further implies by compactness that there exists an η ∈ R+ such that

AT(Ŵ1(t),GA)P+PA(Ŵ1(t),GA)+ηIn+p ≤ 0. (4.37)

Now, consider the positive-definite energy function

V(ē) = ēTP ē. (4.38)

Differentiating (4.38) and using (4.36) yields

V̇(ē(t)) = 2ēT(t)P ˙̄e(t)

= ēT(t)[AT(Ŵ1(t),GA)P+PA(Ŵ1(t),GA)]ē(t)+2ēT(t)PBω1(·). (4.39)

Using (4.24) and (4.37), one can write (4.39) as

V̇(ē(t)) ≤ −η ‖ē(t)‖2
2 +2α ‖SG‖F ‖xc(t)‖2 ‖ω1(·)‖2 . (4.40)

Since ω1(·) consists of bounded terms, it follows that ‖ω1(·)‖2 ≤ ω∗1 , where ω∗1 ∈ R+, and (4.40) can then

be written as
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V̇(ē(t)) ≤ −η ‖ē(t)‖2
2 +2α ‖SG‖F ‖xc(t)‖2 ω

∗
1

= −η ‖eref(t)‖2
2−η ‖xc(t)‖2

2 +2αk−1 ‖S0G0‖F ‖xc(t)‖2 ω
∗
1

= −η ‖eref(t)‖2
2−‖xc(t)‖2

(
η ‖xc(t)‖2− k−1

ψ

)
, (4.41)

where ψ = 2α ‖S0G0‖F ω∗1 . It then follows, similar to [100], that V̇(ē(t))< 0 when ‖xc(t)‖2 satisfies

‖xc(t)‖2 >
ψ

ηk
. (4.42)

To analyze ‖eref(t)‖2, first note that the right hand side of (4.41) is concave with a maximum at ‖xc(t)‖2 =

ψ

2ηk , such that using this maximum in (4.41) gives the upper bound

V̇(ē(t)) ≤ −η ‖eref(t)‖2
2 +

ψ2

4ηk2 . (4.43)

Hence, when ‖eref(t)‖2 satisfies

‖eref(t)‖2 >
ψ

2ηk
, (4.44)

then V̇(ē(t)) < 0. Using (4.42) and (4.44), it follows that V(ē) decreases outside the compact set Ω =

{eref ∈ Rn, xc ∈ Rm : ‖xc(t)‖2 ≤ ψ

ηk and ‖eref(t)‖2 ≤ ψ

2ηk

}
. Next, it follows that V(ē) is upper and lower

bounded as λmin(P)‖ē(t)‖2
2 ≤ V(ē)≤ λmax(P)‖ē(t)‖2

2, and noting ‖eref(t)‖2 ≤ ‖ē(t)‖2 it follows that

λmin(P)‖eref(t)‖2
2 ≤ λmax(P)

(
‖eref(t)‖2

2 +‖xc(t)‖2
2

)
≤ λmax(P)

((
ψ

ηk

)2

+

(
ψ

2ηk

)2
)

= λmax(P)
(

5ψ2

4η2k2

)
. (4.45)

From (4.45), we compute the bound for ‖eref(t)‖2 as

‖eref(t)‖2 ≤
√

ρ

(
5ψ2

4η2k2

)
, (4.46)

where ρ = λmax(P)
λmin(P) . Since ‖ · ‖∞ ≤ ‖ ·‖2, and this bound is uniform, then (4.46) yields
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‖erefτ
(t)‖L∞

≤
√

ρ

(
5ψ2

4η2k2

)
, (4.47)

such that (4.33) is a direct consequence of (4.47) because it holds uniformly in τ . �

Similar to the discussion in Remark 4.3.3, the system uncertainty is not present in the above analysis,

and hence, the above result also identically holds for time-varying system uncertainties

Remark 4.4.2 Proposition 4.4.1 shows that ‖eref(t)‖L∞
becomes small as the actuator dynamics become

fast (i.e., when k is large). Hence, it follows from the results in Propositions 4.3.1 and 4.4.1 as well as the

discussion in Remark 4.3.3 that the upper bound (4.32) on the distance between the uncertain dynamical

system and the ideal reference model can be made small by judiciously increasing the learning gain γ1 and

utilizing an actuator with fast dynamics.

The next proposition shows that the distance between the uncertain dynamical system given by (4.9)

and the ideal reference model given by (4.31) asymptotically vanishes for constant reference commands (i.e.,

c(t) = c).

Proposition 4.4.2 Consider the ideal reference model (4.31), the modified reference model (4.12), the

actuator dynamics (4.10) subject to Assumption 4.3.2, and the feedback control law (4.4). If (k,ω) ∈ κ1

and the reference command is constant, the modified reference model (4.12) will asymptotically converge

to the ideal reference model (4.31). In addition, using the results from Proposition 4.3.1, it follows that

x(t)− xri(t)→ 0 as t→ ∞.

Proof. Let ω2(·), BŴ T
1 (t)e(t). It follows from (4.18) that

ẋr(t) =
(
Ar +BŴ T

1 (t)
)

xr(t)+BHxc(t)+ω2(·). (4.48)

In addition, let ω3(·),−GŴ T
1 (t)e(t)+GK2c(t). Then, it follows from (4.19) that

ẋc(t) = Fxc(t)−GŴ T
1 (t)xr(t)+ω3(·). (4.49)

Note that (4.49) can be rewritten as

xc(t) = F−1 [ẋc(t)+GŴ T
1 (t)xr(t)−ω3(·)

]
, (4.50)
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where it follows from (4.48), (4.50), and Assumption 4.3.2 that

ẋr(t) = Arxr(t)+Brc(t)+BHF−1ẋc(t). (4.51)

Using (4.31) and (4.51), one can write the reference model error dynamics as

ėref(t) = Areref(t)+BHF−1ẋc(t), (4.52)

which implies that if ẋc(t)→ 0 as t→ ∞, then xr(t) converges to xri(t).

Next, (4.49) can be rewritten as

ẋc(t) = Fxc(t)+Fω4(·), (4.53)

where ω4(·) , z(·)+F−1q(·), z(·) , F−1[−GŴ T
1 (t)xri(t)−GŴ T

1 (t)e(t)+GK2c(t)], and q(·) , −GŴ T
1 (t)

·eref(t). Note that (4.53) can be equivalently represented as

ẋc(t) = z1(t)+Fz2(t)+q(·), (4.54)

ż1(t) = Fz1(t)+Fż(t), (4.55)

ż2(t) = Fz2(t)+q(·). (4.56)

Letting x0(t) = [eT
ref(t), zT

2 (t), zT
1 (t)], we have

ẋ0(t) =


Ar +BŴ T

1 (t) BH BHF−1

−GŴ T
1 (t) F 0

0 0 F


︸ ︷︷ ︸

A0(·)

x0(t)+


0

0

F


︸ ︷︷ ︸

B0

ż(t). (4.57)

Note that since the upper left block of A0(·) is quadratically stable for (k,ω) ∈ κ1 by Lemma 4.3.1, F is

Hurwitz, and A0(·) is in an upper triangular form, then it follows that x0(t)→ 0 as t → ∞ if ż(t)→ 0 as

t→ ∞.
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Finally, ż(t) can be written for constant command case as

ż(t) = −F−1G[ ˙̂W T
1 (t)xri(t)+Ŵ T

1 (t)ẋri(t)+
˙̂W T

1 (t)e(t)+Ŵ T
1 (t)ė(t)]. (4.58)

From Proposition 4.3.1, it follows that ˙̂W1(t)→ 0 as t→∞. In addition, since c(t) is constant, then it follows

from (4.31) that ẋri(t)→ 0 as t → ∞. Moreover, since ë(t) is bounded and ė(t) is uniformly continuous as

a direct consequence of Proposition 4.3.1, then ė(t)→ 0 as t → ∞. This argument shows that ż(t)→ 0

as t → ∞, and hence, x0(t)→ 0 as t → ∞, which shows that the error between the ideal reference model

(4.31) and the modified reference model (4.12) vanishes as t→∞. Finally, from Proposition 4.3.1, we know

e(t)→ 0 as t→ ∞, and hence, x(t)− xri(t) = e(t)+ eref(t)→ 0 as t→ ∞. �

4.5 Illustrative Example

To illustrate the proposed adaptive control architecture in the presence of high-order actuator dy-

namics, we consider the second-order system given by

ẋ1(t)

ẋ2(t)

 =

 0 1

0.5 0.5


x1(t)

x2(t)

+
0

1

v(t), (4.59)

with zero initial conditions and let x1(t) represent the angle in radians and x2(t) represent the angular rate of

change in radians per second. For the actuator dynamics, we consider

F =

 0 1

−ω2
n −2ζ ωn

 , G =

0

1

 , H =

[
ω2

n 0

]
. (4.60)

where it is noted that F can be transformed into Jordan form such that Assumption 4.3.1 is satisfied. In

addition, we use a filtered tracking command c(t) and select a reference model with zero initial conditions,

a natural frequency of ωnr = 0.7 rad/s, and a damping ratio ζr = 0.707. For the proposed adaptive control

law, we set R = I2,
∣∣[Ŵ1(t)]1,1

∣∣≤ 1.1, and
∣∣[Ŵ1(t)]2,1

∣∣≤ 1.6.

Figure 4.1 shows the feasible region of allowable actuator dynamics which is given by the ωn and

ζ values for the actuator dynamics. Note that Figure 4.1 provides both the LMI calculated feasible limit as

well as the feasible limit provided by the simulation results, which correspond to the command profile, initial
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conditions, and other parameters for the provided example. Due to space restrictions, we select two points

to simulate the proposed controller performance as seen in Figures 4.2 and 4.3. Since the feasible boundary

corresponds to calculated minimum feasible ωn and ζ values for the actuator dynamics, it is expected that

the system performances are guaranteed to be bounded for actuator dynamics at points greater than and

equal to the calculated feasible boundary. This can be seen in Figure 4.2 when the actuator dynamics are

at the minimum point (ζ ,ωn) = (0.55,2.98), which is located on the feasible boundary. In Figure 4.3,

we let the actuator dynamics be outside the calculated feasible region to show that the closed-loop system

remains bounded until the actuator dynamics reach a value of (ζ ,ωn) = (0.55,2.19). This is consistent

with the presented theory, as we provide an upper bound on the allowable actuator dynamics such that the

closed-loop system remains bounded.

Figure 4.1: LMI calculated feasible region for actuator dynamics.
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Figure 4.2: Proposed controller performance with actuator dynamics
(
(ζ ,ωn) = (0.55,2.98), γ1 = 25

)
.

Figure 4.3: Proposed controller performance with actuator dynamics
(
(ζ ,ωn) = (0.55,2.19), γ1 = 25

)
.
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4.6 Conclusion

For contributing to the previous studies in adaptive control of uncertain dynamical systems in the

presence of high-order actuator dynamics, we presented an LMI-based hedging approach for computing

the fundamental stability interplay between the bandwidth of actuator dynamics and the allowable system

uncertainties. Specifically, the proposed approach modifies the ideal reference model dynamics using the

hedging method to allow correct adaptation, which is not affected by the presence of actuator dynamics.

We analyzed the stability of this modified reference model coupled with the actuator dynamics using tools

and methods from Lyapunov stability, matrix mathematics, and LMIs. In addition, the distance between the

uncertain dynamical system and the ideal (i.e., unmodified) reference model dynamics were also analyzed

and it was remarked that this distance either can be made small by increasing the learning gain and the

bandwidth of the actuator dynamics or asymptotically vanishes when the uncertain dynamical system is

driven by constant reference commands. An illustrative numerical example demonstrated the efficacy of

the proposed approach in computing stability limits of adaptive controllers in the presence of high-order

actuator dynamics. In future research, we will make extensions to the cases in which the control input is

unknown and/or with the actuator output is unknown.
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CHAPTER 5: GENERALIZATIONS AND APPLICATIONS OF THE LMI-BASED HEDGING

APPROACH FOR HIGH-ORDER ACTUATOR DYNAMICS

This chapter provides additional extensions of the work presented in Chapter 4. Specifically, three

generalizations of the proposed LMI-based hedging approach are considered for i) a class of uncertain non-

linear dynamical systems, ii) unmeasurable actuator outputs, and iii) actuator dynamics with an additional

throughput term with an application for the input time-delay problem. In addition, the method of computing

the actuator parameters is more thoroughly addressed and an application to a hypersonic vehicle model for

different cases of pole-zero actuator dynamics is presented.

5.1 Adaptive Control for a Class of Uncertain Nonlinear Dynamical Systems in the Presence of
High-Order Actuator Dynamics1

Adaptive control is a powerful design methodology to achieve closed-loop system stability in the

face of uncertainties resulting from modeling inaccuracies, degraded modes of operation, and changes in

system dynamics. Yet, it is well known that the presence of actuator dynamics can seriously limit closed-

loop system stability of any adaptive control framework. To address the problem of adaptive control design

in the presence of actuator dynamics, we recently introduced a linear matrix inequalities-based adaptive

control framework. The key feature of this approach is to reveal the fundamental stability interplay between

the parameters of a given actuator dynamics model and the allowable uncertainties in the feedback loop.

The contribution of this paper is to generalize our recent work for a class of uncertain nonlinear dynamical

systems. Specifically, for a given high-order, linear time-invariant actuator dynamics model, we utilize

tools and methods from Lyapunov stability and linear matrix inequalities for the computation of closed-

loop system stability limits of adaptive control laws. An illustrative numerical example is also provided to

demonstrate the efficacy and the practicality of the proposed design architecture.

1This section is previously published in [101]. Permission is included in Appendix B. The omitted proofs follow readily from
Chapter 4.
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5.1.1 Introduction

Adaptive control is a powerful design methodology to achieve closed-loop system stability in the

face of uncertainties resulting from modeling inaccuracies, degraded modes of operation, and changes in

system dynamics. Yet, it is well known that the presence of actuator dynamics can seriously limit closed-

loop system stability of any adaptive control framework. In particular, if the actuator dynamics do not have

a sufficiently high bandwidth and/or for safety-critical applications of adaptive control laws, closed-loop

system stability verification steps must be considered for precisely showing the safe actuator bandwidth

limits such that adaptive control laws perform theoretically correct.

To address the problem of adaptive control design in the presence of actuator dynamics, we recently

introduced a linear matrix inequalities-based adaptive control framework [95, 102–104]. Our framework

is predicated on a hedging method originally proposed by the authors of [30, 31, 33], where this method

modifies the ideal reference model dynamics to allow for theoretically correct adaptation that is not affected

by the presence of actuator dynamics. Specifically, our results documented in [95, 102–104] show that

this modification to the ideal reference model dynamics does not yield to unbounded reference model

responses. The key common feature of these results is to reveal the fundamental stability interplay between

the parameters of a given actuator dynamics model and the allowable uncertainties in the feedback loop.

The contribution of this paper is to generalize our recent work documented in [95, 102–104] for a

class of uncertain nonlinear dynamical systems. Specifically, we first use Lyapunov stability to show closed-

loop system stability predicated on a quadratic stability condition. We then utilize linear matrix inequalities

to perform a computation to assess when this stability condition holds for a given high-order, linear time-

invariant actuator dynamics model and bounds of parameters resulting from uncertainty parameterization.

An illustrative numerical example is also provided to demonstrate the efficacy and the practicality of the

proposed design architecture.

The contents of the paper are as follows. Section 5.1.2 presents the mathematical preliminaries

necessary for the main results of this paper. In Section 5.1.3, we present the proposed linear matrix

inequalities-based adaptive control approach predicated on the hedging method for a class of uncertain

nonlinear dynamical systems in the presence of high-order, linear time-invariant actuator dynamics. The

illustrative numerical example is provided in Section 5.1.4 and conclusions are summarized in Section

5.1.5. Finally, we use a fairly standard notation throughout this paper. Specifically, R denotes the set of
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real numbers, Rn denotes the set of n×1 real column vectors, Rn×m denotes the set of n×m real matrices,

R+ (resp. R+) denotes the set of positive (resp., nonnegative) real numbers, Rn×n
+ (resp., Rn×n

+ ) denotes the

set of n× n positive-definite (resp., nonnegative-definite) real matrices, Dn×n denotes the set of n× n real

matrices with diagonal scalar entries, (·)T denotes the transpose operator, tr(·) denotes the trace operator,

and “,” denotes the equality by definition.

5.1.2 Preliminaries

Some necessary mathematical preliminaries are introduced in this section briefly that are needed to

develop the main results of this paper.

Definition 5.1.1 Let

Ω =
{

θ ∈ Rn : (θ min
i ≤ θi ≤ θ

max
i )i=1,2,··· ,n

}
(5.1)

be a convex hypercube in Rn, where (θ min
i ,θ max

i ) represent the minimum and maximum bounds for the ith

component of the n-dimensional parameter vector θ . In addition, let

Ωε =
{

θ ∈ Rn : (θ min
i + ε ≤ θi ≤ θ

max
i − ε)i=1,2,··· ,n

}
(5.2)

be a second hypercube for a sufficiently small positive constant ε , where Ωε ⊂ Ω. Then, the projection

operator Proj : Rn×Rn→ Rn is defined component-wise by

Proj(θ ,y),



(
θ max

i −θi
ε

)
yi, if θi > θ max

i − ε and yi > 0(
θi−θ min

i
ε

)
yi, if θi < θ min

i + ε and yi < 0

yi, otherwise

(5.3)

where y ∈ Rn [6].

As a consequence of the above definition, note that

(θ −θ
∗)T(Proj(θ ,y)− y)≤ 0, θ

∗ ∈Ωε , (5.4)
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holds [6, 82]. Note that we use the generalization of this definition to matrices throughout this paper as

Projm(Θ,Y ) =
(
Proj(col1(Θ),col1(Y )), . . . ,Proj(colm(Θ),colm(Y ))

)
, (5.5)

where Θ ∈ Rn×m, Y ∈ Rn×m, and coli(·) denotes the i-th column operator. In this case, for a given Θ∗, it

follows from (5.4) that

tr
[
(Θ−Θ

∗)T(Projm(Θ,Y )−Y )
]

=
m

∑
i=1

[
coli(Θ−Θ

∗)T(Proj(coli(Θ),coli(Y ))− coli(Y ))
]
≤ 0, (5.6)

holds.

For a concise overview of the standard model reference adaptive control problem, consider a class

of uncertain nonlinear dynamical systems G given by

ẋ(t) = Ax(t)+B[u(t)+δ (x(t))], x(0) = x0, (5.7)

where x(t) ∈ Rn is the state vector available for feedback, u(t) ∈ Rm is the control input restricted to the

class of admissible controls consisting of measurable functions, δ : Rn→ Rm is an uncertainty, A ∈ Rn×n is

a known system matrix, B ∈ Rn×m is a known input matrix, and the pair (A,B) is controllable.

Assumption 5.1.1 The uncertainty in (5.7) is parameterized as

δ (x(t)) = W T
σ(x(t)), x(t) ∈ Rn, (5.8)

where W ∈ Rs×m is an unknown weight matrix and σ : Rn → Rs is a known basis function of the form

σ(x(t)) = [σ1(x(t)),σ2(x(t)), . . . ,σs(x(t))]T, which satisfies

σ(x(t)) = K(x(t))x(t)+b(x(t)), K : Rn→ Rs×n, b : Rn→ Rs, (5.9)

with b(x(t)) being a bounded term. In addition, (5.9) satisfies the inequality given by

‖σ(x(t))−σ0‖ ≤ α ‖x(t)‖ , x(t) ∈ Rn, (5.10)

with σ0 ∈ R+ and α ∈ R+.
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Next, consider the reference model capturing a desired, ideal closed-loop dynamical system perfor-

mance given by

ẋr(t) = Arxr(t)+Brc(t), xr(0) = xr0, (5.11)

where xr(t)∈Rn is the reference state vector, c(t)∈Rm is a given uniformly continuous bounded command,

Ar ∈Rn×n is the Hurwitz reference model matrix, and Br ∈Rn×m is the command input matrix. The objective

of the model reference adaptive control problem is to construct a feedback control law architecture u(t) such

that the state vector x(t) asymptotically (or approximately) follows the reference state vector xr(t).

For the purpose of solving this problem, consider the feedback control law given by

u(t) = un(t)+ua(t), (5.12)

where un(t) and ua(t) are the nominal feedback control law and the adaptive feedback control law, respec-

tively. Let the nominal feedback control law be given by

un(t) = −K1x(t)+K2c(t), (5.13)

where K1 ∈Rm×n and K2 ∈Rm×m are the nominal feedback and the nominal feedforward gains, respectively,

such that Ar = A−BK1 and Br = BK2 hold. Using (5.12) and (5.13) in (5.7) with Assumption 5.1.1 yields

ẋ(t) = Arx(t)+Brc(t)+B[ua(t)+W T
σ(x(t))]. (5.14)

Now, let the adaptive feedback control law be given by

ua(t) = −Ŵ T(t)σ(x(t)), (5.15)

where Ŵ (t) ∈ Rs×m is the estimate of W satisfying the weight update law

˙̂W (t) = γProjm
[
Ŵ (t), σ(x(t))eT(t)PB

]
, Ŵ (0) = Ŵ0, (5.16)

87



www.manaraa.com

where γ ∈ R+ is the learning rate gain, e(t), x(t)− xr(t) is the system error state vector, and P ∈ Rn×n
+ is a

solution of the Lyapunov equation

0 = AT
r P+PAr +R, (5.17)

with R ∈Rn×n
+ . Note that since Ar is Hurwitz, it follows from the converse Lyapunov theory that there exists

a unique P satisfying (5.17) for a given R. In addition, the projection bounds are defined such that

∣∣[Ŵ (t)]i j
∣∣≤ Ŵmax,i+( j−1)s, (5.18)

for i = 1, ...,s and j = 1, ...,m, where Ŵmax,i+( j−1)s ∈ R+ denotes (symmetric) element-wise projection

bounds. Note that the results of this paper can be readily applied to the case when asymmetric projection

bounds are considered.

Now, using (5.15) in (5.14) along with (5.11), the system error dynamics can be written as

ė(t) = Are(t)−BW̃ T(t)σ(x(t)), e(0) = e0, (5.19)

where W̃ (t) , Ŵ (t)−W ∈ Rs×m. Note that the weight update law given by (5.16) can be derived using

Lyapunov analysis by considering the Lyapunov function candidate given by (see, for example, [6])

V(e,W̃ ) = eTPe+ γ
−1tr W̃ TW̃ . (5.20)

Note that V(0,0) = 0 and V(e,W̃ ) > 0 for all (e,W̃ ) 6= (0,0). Now, differentiating (5.20) yields V̇(e(t),

W̃ (t))≤−eT(t)Re(t)≤ 0, which guarantees that the system error state vector e(t) and the weight error W̃ (t)

are Lyapunov stable, and hence, are bounded for all t ∈ R+. Since σ(x(t)) = σ(e(t)+ xr(t)) is bounded for

all t ∈ R+ as a consequence of the fact that e(t) and xr(t) are bounded for all t ∈ R+, it follows from (5.19)

that ė(t) is bounded, and hence, V̈(e(t),W̃ (t)) is bounded for all t ∈ R+. It then follows from Barbalat’s

lemma that limt→∞ V̇
(
e(t),W̃ (t)

)
= 0, which consequently shows that e(t)→ 0 as t→ ∞.

The above discussion highlights that the adaptive control formulation introduced in this section has

the capability to suppress the effect of any nonlinear system uncertainty satisfying (5.8) to achieve desirable

88



www.manaraa.com

command following performance specifications. Yet, it provides no guarantees in the presence actuator

dynamics that appear in any practical application of feedback control laws.

In order to reach to the conclusion highlighted above, it should be noted that one does not necessarily

need (5.9) and (5.10) given for the uncertainty parameterization in (5.8). However, they are necessary to

utilize linear matrix inequalities (LMIs) in the next section with the proposed hedging-based adaptive control

framework for ensuring closed-loop system stability in the presence of high-order, linear time-invariant

actuator dynamics.

5.1.3 Closed-Loop Adaptive Control System Stability with Actuator Dynamics

Building on the mathematical preliminaries overviewed in Section 5.1.2, we now introduce the ac-

tuator dynamics problem and the LMIs-based adaptive control approach predicated on the hedging method.

Specifically, consider the uncertain nonlinear dynamical system G given by

ẋ(t) = Ax(t)+B[v(t)+δ (x(t))], x(0) = x0, (5.21)

where v(t) ∈ Rm is the actuator output of the actuator dynamics GA satisfying a high-order, linear time-

invariant model

ẋc(t) = Fxc(t)+Gu(t), xc(0) = xc0,

v(t) = Hxc(t),
(5.22)

with xc(t) ∈ Rp being the actuator state vector, G ∈ Rp×m being the actuator input matrix, H ∈ Rm×p being

the actuator output matrix, and F ∈ Rp×p being a Hurwitz matrix in Jordan form such that there exists

S ∈Rp×p
+ that satisfies 0 = FTS+SF + I. Note that we say F in Jordan form without loss of generality since

state-space representations of differential equations are not unique. Throughout this paper, we inherently

assume that the algebraic multiplicity of F is equal to its geometric multiplicity and −HF−1G = I.

It follows from Assumption 5.1.1 that (5.21) can be equivalently rewritten as

ẋ(t) = Ax(t)+B
[
u(t)+W T(t)σ(x(t))

]
+B
[
v(t)−u(t)

]
. (5.23)

Using the feedback control given by (5.12), (5.13), and (5.15) in (5.23) yields

ẋ(t) = Arx(t)+Brc(t)−BW̃ T(t)σ(x(t))+B
[
v(t)−u(t)

]
. (5.24)
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Utilizing the hedging approach originally proposed in [30, 31, 33], let the modified reference model dynam-

ics be given by

ẋr(t) = Arxr(t)+Brc(t)+B
[
v(t)−u(t)

]
, xr(0) = xr0, (5.25)

such that the system error dynamics follow from (5.24) and (5.25) as

ė(t) = Are(t)−BW̃ T(t)σ(x(t)), e(0) = e0. (5.26)

Notice that (5.26) is identical to the system error dynamics given by (5.19) due to the fact that the hedging

signal B
[
v(t)−u(t)

]
is introduced to the ideal reference model dynamics, and hence, the system error

dynamics are not affected due to the presence of high-order, linear time-invariant actuator dynamics.

The following two lemmas are needed for the results in this section. For this purpose, let θ̂(t,x(t)),

Ŵ T(t)K(x(t)), let ω ∈R+ be such that Ŵmax,i+( j−1)s≤ω for all i= 1, . . . ,s and j = 1, . . . ,m, and let k0 ∈R+,

k1 ∈R+, and k∈R+ be such that k0≤ k, k1≤ k, and k≤ k, where k scales the eigenvalues of GA (this implies

that we let F , kF0, H , kH0, G, G0).

Lemma 5.1.1 There exists a set κ ,
{

k : k ≤ k
} ⋃ {

ω,k0 : Ŵmax,i+( j−1)s ≤ ω, i = 1, . . . ,s, j = 1, . . . ,m

and k0 ≤ k
}

such that if (k,ω,k0) ∈ κ and K(x(t)) is bounded, then

A(θ̂(t,x(t)),GA) =

 A+Bθ̂(t,x(t)) BH

−GK1−Gθ̂(t,x(t)) F

 (5.27)

is quadratically stable.

Proof. Due to page restrictions, the proof is omitted. �

Consistent with our prior work [95, 102–104], Lemma 5.1.1 reveals the fundamental stability inter-

play between the allowable system uncertainties (through the selection of the projection operator bounds)

and the bandwidth of the high-order actuator dynamics.
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Lemma 5.1.2 There exists a set κ1 ,
{

k1 : k1 ≤ k
}

, such that if k1 ∈ κ1, then

A(GA) =

 A BH

−GK1 F

 , (5.28)

is quadratically stable.

Proof. Due to page restrictions, the proof is omitted. �

The results given in Lemma 5.1.1 are predicated on the boundedness of K(x(t)), where this automat-

ically holds in our case as shown as a part of the proof of the next theorem presenting the main contribution

of this paper.

Theorem 5.1.1 Consider the uncertain nonlinear dynamical system given by (5.21) subject to Assumption

5.1.1, the reference model given by (5.25), the actuator dynamics given by (5.22), and the feedback control

law given by (5.12), (5.13), and (5.15) along with the update law (5.16). If

(k,ω,k0) ∈ κ, k1 ∈ κ1, (5.29)

then the solution (e(t),W̃ (t),xr(t),v(t)) of the closed-loop dynamical system are bounded and

lim
t→∞

e(t) = 0. (5.30)

Proof. To show Lyapunov stability and guarantee boundedness of the system error state e(t) and the

weight error W̃ (t), consider the Lyapunov function candidate given by (5.20). Differentiating (5.20) yields

V̇
(
e(t),W̃ (t)

)
≤−eT(t)Re(t)≤ 0, which guarantees the Lyapunov stability, and hence, the boundedness of

the solution
(
e(t),W̃ (t)

)
.

To show the boundedness of xr(t) and xc(t) (and therefore v(t)), consider the reference model (5.25)

and the actuator dynamics (5.22) subject to (5.12), (5.13), and (5.15) as ẋr(t) = Axr(t)+B
[
Hxc(t)+K1e(t)+

Ŵ T(t)σ(x(t))
]
, and ẋc(t) = Fxc(t)−GK1xr(t)−GK1(t)e(t)+GK2c(t)−GŴ T(t)σ(x(t)), these dynamics

can be rewritten in compact form as

ξ̇ (t) = A(GA)ξ (t)+ζ (·)+ω(·), (5.31)
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with

ξ (t) = [xT
r (t),x

T
c (t)]

T, (5.32)

and

ζ (·) =

 BŴ T(t)σ(x(t))

−GŴ T(t)σ(x(t))

 , (5.33)

ω(·) =

 BK1e(t)

−GK1e(t)+GK2c(t)

 . (5.34)

Note that ω(·) in (5.31) is a bounded perturbation for all t ∈R+ as a result of the boundedness of the signals

e(t) and W̃ (t) for all t ∈ R+. In the remainder of the proof, we consider two cases.

In Case 1, for ‖x(t)‖< ε , we use Assumption 5.1.1 and let K(x(t)) = 0 such that σ(x(t)) = b(x(t))

and is therefore bounded for all t ∈ R+. It then follows that (5.31) can be rewritten as

ξ̇ (t) = A(GA)ξ (t)+ω(·), (5.35)

with

ω(·) =

 BŴ T(t)b(x(t))+BK1e(t)

−GŴ T(t)b(x(t))−GK1e(t)+GK2c(t)

 . (5.36)

Now, it follows that since ω(·) is bounded for all t ∈ R+ and A(GA) is quadratically stable for k1 ∈ κ1 by

Lemma 5.1.2, then xr(t) and xc(t) are also bounded [88]. This further implies that the actuator output v(t) is

bounded.

In Case 2, we now consider ‖x(t)‖ ≥ ε . For this purpose, once again, we use Assumption 5.1.1 and

let b(x(t)) = 0 such that

σ(x(t)) = K(x(t))x(t). (5.37)
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We first show that K(x(t)) is bounded for all t ∈ R+. Specifically, it follows from (5.37) that

‖K(x(t))x(t)‖
‖x(t)‖ =

‖σ(x(t))‖
‖x(t)‖

=
‖σ(x(t))−σ0 +σ0‖

‖x(t)‖

≤ ‖σ(x(t))−σ0‖
‖x(t)‖ +

‖σ0‖
‖x(t)‖

≤ α ‖x(t)‖
‖x(t)‖ +

‖σ0‖
‖x(t)‖ . (5.38)

Taking the supremum of both sides yields

sup‖x(t)‖6=0
‖K(x(t))x(t)‖
‖x(t)‖ ≤ sup‖x(t)‖6=0

(
α +

‖σ0‖
‖x(t)‖

)
, (5.39)

which further implies

‖K(x(t))‖ ≤ α +
‖σ0‖

ε
, (5.40)

for ‖x(t)‖ ≥ ε , and hence, K(x(t)) is bounded for all t ∈ R+.

Next, the matrix ζ (·) in (5.31) can be rewritten as

ζ (·) =

 BŴ T(t)K(x(t))
(
xr(t)+ e(t)

)
−GŴ T(t)K(x(t))

(
xr(t)+ e(t)

)
 . (5.41)

Note that since Ŵ (t) is bounded for all t ∈ R+ as a result of the projection based weight update law and the

boundedness of K(x(t)) for all t ∈ R+,

θ̂(t,x(t)) = Ŵ T(t)K(x(t)), (5.42)

is bounded for all t ∈ R+ and it follows from (5.41)

ζ (·) =

 Bθ̂(t,x(t))
(
xr(t)+ e(t)

)
−Gθ̂(t,x(t))

(
xr(t)+ e(t)

)
 . (5.43)
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Then, using (5.43), (5.31) can be rewritten as

ξ̇ (t) = A(θ̂(t,x(t)),GA)ξ (t)+ω(·), (5.44)

with

ω(·) =

 Bθ̂(t,x(t))e(t)+BK1e(t)

−Gθ̂(t,x(t))e(t)−GK1e(t)+GK2c(t)

 . (5.45)

Now, as in Case 1, it follows that since ω(·) is bounded for all t ∈ R+ and A(θ̂(t,x(t)),GA) is quadratically

stable for (k,ω,k0) ∈ κ by Lemma 5.1.1, then xr(t) and xc(t) are also bounded for all t ∈ R+, which further

implies that the actuator output v(t) is bounded for all t ∈ R+.

To show limt→∞ e(t) = 0, note that x(t) is bounded for all t ∈ R+ as a consequence of the bound-

edness of e(t) and xr(t) for all t ∈ R+ for both cases. It now follows from (5.26) that ė(t) is bounded for

all t ∈ R+, and hence, V̈(e(t),W̃ (t)) is bounded for all t ∈ R+. As a consequence of the boundedness of

V̈(e(t),W̃ (t)) and Barbalat’s lemma [88], limt→∞ V̇
(
e(t),W̃ (t)

)
= 0, and hence, limt→∞ e(t) = 0. �

To satisfy the quadratic stability of (5.27), we can utilize LMIs by following a similar procedure

documented in our recent works [95, 102–104]. For this purpose, let W i1,...,il ∈ Rs×m be defined as

W i1,...,il =



(−1)i1Ŵmax,1 (−1)i1+sŴmax,1+s . . . (−1)i1+(m−1)sŴmax,1+(m−1)s

(−1)i2Ŵmax,2 (−1)i2+sŴmax,2+s . . . (−1)i2+(m−1)sŴmax,2+(m−1)s

...
...

. . .
...

(−1)isŴmax,n (−1)i2sŴmax,2s . . . (−1)imsŴmax,ms


, (5.46)

where il ∈ {1,2}, l ∈ {1, ...,2ms}, such that W i1,...,il represents the corners of the hypercube defining the

maximum variation of Ŵ (t). Furthermore, since we define θ̂(t,x(t)), Ŵ T(t)K(x(t)), let θ i1,...,ir ∈Rm×n be
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defined as

θ i1,...,ir =



(−1)i1 θ̂max,1 (−1)i1+m θ̂max,1+m . . . (−1)i1+(n−1)m θ̂max,1+(n−1)m

(−1)i2 θ̂max,2 (−1)i2+m θ̂max,2+m . . . (−1)i2+(n−1)m θ̂max,2+(n−1)m

...
...

. . .
...

(−1)im θ̂max,n (−1)i2m θ̂max,2m . . . (−1)inm θ̂max,nm


, (5.47)

where ir ∈ {1,2}, r ∈
{

1, ...,2ms+1
}

, such that θ̄i1,...,ir represent the corners of the hypercube defining the

maximum variation of the product of Ŵ T(t)K(x(t)). Utilizing the results in [96, 97], if

Ai1,...,ir =

A+Bθ 1i1 ,...,ir
BH

−Gθ 1i1 ,...,ir
F

 , (5.48)

satisfies the matrix inequality

AT
i1,...,irP+PAi1,...,ir < 0, P = PT > 0, (5.49)

for all permutations of θ i1,...,ir , then (5.27) is quadratically stable. Since it can be readily shown that (5.27)

is quadratically stable for large values of k, we can cast (5.49) as a convex optimization problem and solve

it using LMIs.

5.1.4 Illustrative Numerical Example

In order to illustrate the proposed LMIs-based adaptive control architecture predicated on the hedg-

ing method, we consider the second-order uncertain nonlinear dynamical system given by

ẋ1(t)

ẋ2(t)

=

0 1

1 1


x1(t)

x2(t)

+
0

1

(v(t)+δ (x(t))
)
, (5.50)

with zero initial conditions, where x1(t) represents the angle in radians and x2(t) represents the angular

rate of change in radians per second. Here, in addition, δ (x(t)) represents an uncertainty of the form

δ (x) = β1x2(t)sin(x1(t))+β2x1(t)cos(x2(t)), where βi, i = 1,2, are unknown.
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For the actuator dynamics, we consider the second-order model given by

F =

 0 1

−ω2
n −2ζ ωn

 , G =

0

1

 , H =

[
ω2

n 0

]
, (5.51)

where it is noted that F can be trivially transformed into Jordan form.

For our numerical example, we set β1 = β2 = 1 and choose K1 = [2,2.4] and K2 = 1 for the nominal

controller design that yields to a reference model with a natural frequency of ωnr = 1.0 rad/s and a damping

ratio ζr = 0.7, which yields

Ar =

 0 1

−1 −1.4

 , Br =

0

1

 . (5.52)

In addition, we use a filtered tracking command c(t) and we set R = I2 from (5.17) for the proposed adaptive

controller design. Using the rectangular projection operator, the bounds on the uncertainty are set element-

wise such that
∣∣[Ŵ (t)]i,1

∣∣≤ 1.1 with i = 1,2. We set all initial conditions to zero such that Assumption 5.1.1

is satisfied with α = 1. Using this along with the bounds on Ŵ (t) in the LMI analysis highlighted in Section

III, the feasible region of allowable actuator dynamics is calculated.

Figure 5.1 shows the feasible region of allowable actuator dynamics that is given by the ωn and ζ

values for the actuator dynamics. Note that Figure 5.1 provides both the LMI calculated feasible limit as

well as the feasible limit provided by the simulation results. Due to space restrictions, we select two points

to simulate the proposed controller performance as seen in Figures 5.2 and 5.3. Since the feasible boundary

corresponds to calculated minimum feasible ωn and ζ values for the actuator dynamics, it is expected that

the system performances are guaranteed to be bounded for actuator dynamics at points greater than and

equal to the calculated feasible boundary. This can be seen in Figure 5.2 when the actuator dynamics are at

the minimum point (ζ ,ωn) = (0.525,5.28), which is located on the feasible boundary. In Figure 5.3, we let

the actuator dynamics be outside the calculated feasible region to show that the closed-loop system remains

bounded until the actuator dynamics reach a value of (ζ ,ωn) = (0.525,3.46). This is consistent with the

presented theory, as we provide a (conservative) upper bound on the allowable actuator dynamics such that

the closed-loop system remains bounded.
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Figure 5.1: LMI calculated feasible region for actuator dynamics.

Figure 5.2: Proposed controller performance with actuator dynamics
(
(ζ ,ωn) = (0.525,5.28), γ = 25

)
.
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Figure 5.3: Proposed controller performance with actuator dynamics
(
(ζ ,ωn) = (0.525,3.46), γ = 25

)
.

5.1.5 Conclusion

Although adaptive control is a powerful design methodology to cope with a broad spectrum of

uncertainties, the presence of actuator dynamics can seriously limit achievable closed-loop adaptive control

system stability in any practical application. For addressing this problem, we considered a class of uncertain

nonlinear dynamical systems in this paper and presented a LMI-based adaptive control framework predi-

cated on the hedging method to ensure closed-loop system stability in the presence of high-order, linear

time-invariant actuator dynamics. In addition to rigorously analyzing the overall stability of the proposed

framework, which revealed the fundamental stability interplay between the parameters of a given actuator

dynamics model and the allowable uncertainties in the feedback loop, we also provided an illustrative

numerical example to demonstrate its efficacy and practicality. Finally, although this paper considered a

particular adaptive control formulation, namely model reference adaptive control architecture, the presented

design methodology can be used in a complimentary way with many other approaches to adaptive control.
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5.2 A Model Reference Adaptive Control Framework for Uncertain Dynamical Systems with High-
Order Actuator Dynamics and Unknown Actuator Outputs2

As it is well-known, the stability properties of model reference adaptive controllers can be seri-

ously affected by the presence of actuator dynamics. To this end, the authors recently proposed linear

matrix inequalities-based hedging approaches to compute the stability limits of model reference adaptive

controllers in the presence of a) scalar actuator dynamics with known outputs, b) scalar actuator dynamics

with unknown outputs, and c) high-order (linear time-invariant) actuator dynamics with known outputs.

The common denominator of these approaches is that they have the capability to rigorously characterize

the fundamental stability interplay between the system uncertainties and the necessary bandwidth of the

actuator dynamics.

Building on these results, the purpose of this paper is to extend the recent work by the authors to the

general case, where there exist high-order actuator dynamics with unknown outputs in the closed-loop model

reference adaptive control systems. For this purpose, we propose an observer architecture to estimate the

unknown output of the actuator dynamics and use the estimated actuator output to design the linear matrix

inequalities-based hedging framework. Remarkably, with the proposed observer, the sufficient stability

condition in this case of unknown actuator outputs is identical to the case with known actuator outputs

that was established in the prior work by the authors. Therefore, a control designer can utilize the proposed

framework for practical applications when the output of the actuator dynamics is not measurable, and hence,

unknown (e.g., in hypersonic vehicle applications). An illustrative numerical example complements the

proposed theoretical contribution.

5.2.1 Introduction

While model reference adaptive controllers have the capability to suppress the effect of wide classes

of system uncertainties to achieve desired stabilization and command following system performances, it is

well-known that their stability properties can be seriously affected by the presence of actuator dynamics

(e.g., see [95] and references therein). To address this issue, the authors recently proposed linear matrix

inequalities (LMI)-based hedging approaches, where the hedging technique [30, 31, 33] modifies the ideal

reference model dynamics in order to allow correct adaptation that is not affected by the presence of actuator

dynamics, and then LMIs are used to compute the stability limits of model reference adaptive controllers in

2This section is previously published in [105]. Permission is included in Appendix B.
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the presence of a) scalar actuator dynamics with known outputs, b) scalar actuator dynamics with unknown

outputs, and c) high-order (linear time-invariant) actuator dynamics with known outputs [95, 101–104].

These recent approaches have the capability to rigorously characterize the fundamental stability interplay

between the system uncertainties and the necessary bandwidth of the actuator dynamics, and hence, allow

safe implementation of model reference adaptive control systems for many real-world practical systems

having actuator dynamics.

Building on our recent results documented in [95, 101–104], the main contribution of this paper is

to extend the recent work by the authors to the general case, where there exist high-order actuator dynamics

with unknown outputs in the closed-loop model reference adaptive control systems. For this purpose, we

propose an observer architecture to estimate the unknown output of the actuator dynamics and use the

estimated actuator output to design the LMI-based hedging framework. Remarkably (consistent with the

results established for scalar actuator dynamics case[95, 102, 103]), the sufficient stability condition in

this case of unknown high-order actuator outputs is identical to the case with known high-order actuator

outputs that was established in the prior work by the authors [104]. Therefore, a control designer can

utilize the proposed framework for practical applications when the output of the actuator dynamics is not

measurable, and hence, unknown (e.g., in hypersonic vehicle applications). Although the proposed results

in this paper focus on a particular model reference adaptive control framework, the results allowing for safe

implementation of adaptive control systems can be readily applied to many other control designs such as

[35, 75, 106–113] for improved performance.

In this paper, R denotes the set of real numbers, Rn denotes the set of n× 1 real column vectors,

Rn×m denotes the set of n×m real matrices, R+ (resp. R+) denotes the set of positive (resp., nonnegative)

real numbers, Rn×n
+ (resp., Rn×n

+ ) denotes the set of n×n positive-definite (resp. nonnegative-definite) real

matrices, Sn×n denotes the set of n×n symmetric real matrices, Dn×n denotes the set of n×n real matrices

with diagonal scalar entries, (·)T denotes the transpose operator, (·)−1 denotes the inverse operator, tr(·)

denotes the trace operator,
∣∣∣∣·∣∣∣∣2 denotes the Euclidian norm,

∣∣∣∣·∣∣∣∣F denotes the Frobenius matrix norm, [A]i j

denotes the ij-th entry of the real matrix A∈Rn×m, and λmin(A) (resp., λmax(A)) denotes the minimum (resp.,

maximum) eigenvalue of the real matrix A ∈ Rn×n.

The organization of this paper is as follows. Section 5.2.2 covers the mathematical preliminaries

necessary for the presented results in the paper. Section 5.2.3 introduces the proposed LMI-based hedging

approach for uncertain dynamical systems subject to high-order actuator dynamics with unknown actuator
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outputs. An illustrative numerical example is provided in Section 5.2.4 to demonstrate the efficacy of the

proposed approach and conclusions are summarized in Section 5.2.5.

5.2.2 Mathematical Preliminaries

Consistent with our prior work [95, 101–104], we utilize projection operators in the design of

model reference adaptive controllers throughout this paper (see below). As a consequence, we start with

its following definition.

Definition 5.2.1 Let Ω=
{

θ ∈ Rn : (θ min
i ≤ θi ≤ θ max

i )
}

, i= 1,2, · · · ,n be a convex hypercube in Rn, where

(θ min
i ,θ max

i ) represent the minimum and maximum bounds for the ith component of the n-dimensional

parameter vector θ . In addition, let Ωε =
{

θ ∈ Rn : (θ min
i + ε ≤ θi ≤ θ max

i − ε)
}

, i = 1,2, · · · ,n be a

second hypercube for a sufficiently small positive constant ε , where Ωε ⊂Ω. Then, the projection operator

Proj : Rn×Rn→ Rn is defined component-wise by

Proj(θ ,y),



(
θ max

i −θi
ε

)
yi, if θi > θ max

i − ε and yi > 0(
θi−θ min

i
ε

)
yi, if θi < θ min

i + ε and yi < 0

yi, otherwise

(5.53)

where y ∈ Rn [6].

Based on the above definition, we note that

(θ −θ
∗)T(Proj(θ ,y)− y)≤ 0, θ

∗ ∈Ωε , (5.54)

holds [6, 82]. In this paper, we use the generalization of this definition to matrices as

Projm(Θ,Y ) =
(
Proj(col1(Θ),col1(Y )), . . . ,Proj(colm(Θ),colm(Y ))

)
,

where Θ ∈ Rn×m, Y ∈ Rn×m, and coli(·) denotes the i-th column operator. For a given Θ∗, it now follows

from (5.54) that

tr
[
(Θ−Θ

∗)T(Projm(Θ,Y )−Y )
]

=
m

∑
i=1

[
coli(Θ−Θ

∗)T(Proj(coli(Θ),coli(Y ))− coli(Y ))
]
≤ 0. (5.55)
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For completeness, we next present a concise overview of the standard model reference adaptive

control problem. To this end, we consider the uncertain dynamical system given by

ẋ(t) = Ax(t)+Bu(t), x(0) = x0, (5.56)

where x(t) ∈ Rn is the measurable state vector, u(t) ∈ Rm is the control input, A ∈ Rn×n is an unknown

system matrix, B ∈ Rn×m is a known input matrix, and the pair (A,B) is controllable. In addition, we

consider the (ideal) reference model given by

ẋr(t) = Arxr(t)+Brc(t), xr(0) = xr0, (5.57)

where xr(t)∈Rn is the reference state vector, c(t)∈Rm is a given uniformly continuous bounded command,

Ar ∈Rn×n is the Hurwitz reference model matrix, and Br ∈Rn×m is the command input matrix. The objective

of the model reference adaptive control problem is to construct an adaptive feedback control law u(t) such

that the state vector x(t) asymptotically follows the reference state vector xr(t).

We now make the following assumption, which is standard in the model reference adaptive control

literature and is known as the matching condition [5–7].

Assumption 5.2.1 There exists an unknown matrix K1 ∈ Rm×n and a known matrix K2 ∈ Rm×m such that

Ar = A−BK1 and Br = BK2 hold.

Next, (5.56) can be rewritten based on Assumption 5.2.1 as

ẋ(t) = Arx(t)+Brc(t)+B
[
u(t)+W Tx(t)−K2c(t)

]
, (5.58)

where W , KT
1 ∈ Rn×m is unknown. Now, we choose the adaptive feedback control law as

u(t) = −Ŵ T(t)x(t)+K2c(t), (5.59)

where Ŵ (t) ∈ Rn×m is the estimate of W satisfying the weight update law

˙̂W (t) = γProjm
[
Ŵ (t), x(t)eT(t)PB

]
, Ŵ (0) = Ŵ10, (5.60)
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with γ ∈ R+ being the learning rate, e(t) , x(t)− xr(t) being the system error state vector, and P ∈ Rn×n
+

being the solution of the Lyapunov equation given by

0 = AT
r P+PAr +R, (5.61)

R ∈ Rn×n
+ . Note that since Ar is Hurwitz, it follows that there exists a unique P satisfying (5.61) for a given

R [80]. For (5.60), the projection bounds are defined such that

∣∣[Ŵ (t)]i j
∣∣≤ Ŵmax,i+( j−1)n, (5.62)

for i = 1, ...,n and j = 1, ...,m, where Ŵmax,i+( j−1)n ∈ R+ denotes (symmetric) element-wise projection

bounds.

Finally, using (5.59) in (5.58) along with (5.57), the system error dynamics can be written as

ė(t) = Are(t)−BW̃ T(t)x(t), e(0) = e0, (5.63)

where W̃ (t), Ŵ (t)−W ∈ Rn×m. Note that the weight update law given by (5.60) can be readily derived

using Lyapunov analysis by considering the Lyapunov function candidate given by (see, for example, [5–7])

V(e,W̃ ) = eTPe+ γ
−1tr W̃ TW̃ , (5.64)

where differentiating (5.64) yields V̇(e(t),W̃ (t)) ≤ −eT(t)Re(t) ≤ 0. This guarantees that the system error

state vector e(t) and the weight error W̃ (t) are Lyapunov stable, and hence, are bounded for all t ∈ R+.

Since x(t) is bounded for all t ∈ R+, it follows from (5.63) that ė(t) is bounded, and hence, V̈(e(t),W̃ (t))

is bounded for all t ∈ R+. It then follows from Barbalat’s lemma that limt→∞ V̇
(
e(t),W̃ (t)

)
= 0, which

consequently shows that e(t)→ 0 as t → ∞. This analysis highlights that the standard model reference

adaptive control formulation overviewed in this section has the capability to suppress the effect of system

uncertainties, in the absence of actuator dynamics, to achieve desirable tracking performance specifications

captured by (5.57).
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5.2.3 Adaptive Control with Unknown Actuator Output

Building on the mathematical preliminaries overviewed in Section 5.2.2, we now present a new de-

sign procedure to ensure guaranteed stability of model reference adaptive control systems in the presence of

high-order actuator dynamics with unknown outputs. For this purpose, we consider the uncertain dynamical

system subject to actuator dynamics given by

ẋ(t) = Ax(t)+Bv(t), x(0) = x0. (5.65)

In (5.65), v(t) ∈ Rm is the unknown actuator output of the high-order actuator dynamics GA given by

ẋc(t) = Fxc(t)+Gu(t), xc(0) = xc0,

v(t) = Hxc(t),
(5.66)

with xc(t) ∈ Rp being the actuator state vector, G ∈ Rp×m being the actuator input matrix, H ∈ Rm×p being

the actuator output matrix, and F ∈ Rp×p being a Hurwitz matrix in Jordan form such that there exists

S ∈ Rp×p
+ that satisfies

0 = FTS+SF + I. (5.67)

Here, without loss of much generality, we let the static gain of the actuator dynamics (5.66) be unity (i.e.,

−HF−1G = I) and assume that the algebraic multiplicity of the Hurwitz matrix F is equal to its geometric

multiplicity.

Next, based on Assumption 5.2.1, (5.65) can be rewritten as

ẋ(t) = Arx(t)+Brc(t)+B
[
u(t)+W Tx(t)−K2c(t)

]
+B
[
v(t)−u(t)

]
. (5.68)

Based on the hedging approach [30, 31, 33], we now consider the (modified) reference model dynamics

ẋr = Arxr(t)+Brc(t)+B
[
v̂(t)−u(t)

]
, xr(0) = xr0, (5.69)

where v̂(t) ∈ Rm is an estimate of the actuator output satisfying the proposed observer dynamics of this

paper given by
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˙̂xc(t) = Fx̂c(t)+Gu(t)+
1
µ

S−1HTBTPe(t), x̂c(0) = x̂c0, (5.70)

v̂(t) = Hx̂c(t), (5.71)

with x̂c(t) ∈Rp being the internal observer state vector and µ ∈R+. The system error dynamics then follow

from the system dynamics given by (5.68) along with the adaptive control given by (5.59) and the reference

model given by (5.69) as

ė(t) = Are(t)−BW̃ T(t)x(t)+Bṽ(t), e(0) = e0. (5.72)

where ṽ(t), v(t)− v̂(t) = Hx̃c(t) ∈ Rm with x̃c(t), xc(t)− x̂c(t) ∈ Rp.

The following lemma is needed for the results in this section. For this purpose, let ω ∈ R+ be such

that Ŵmax,i+( j−1)n ≤ ω for all i = 1, . . . ,n and j = 1, . . . ,m and let k ∈ R+ be such that k ≤ k, where k scales

the eigenvalues of GA. That is, let F , kF0, H , kH0, G, G0.

Lemma 5.2.1 There exists a set κ1 ,
{

k : k ≤ k
} ⋃ {

ω : Ŵmax,i+( j−1)n ≤ ω, i = 1, . . . ,n, j = 1, . . . ,m
}

such that if (k,ω) ∈ κ1, then

A(Ŵ (t),GA) =

Ar +BŴ T(t) BH

−GŴ T(t) F

 (5.73)

is quadratically stable.

Proof. We only provide a concise sketch of the proof here. In particular, the existence of k follows

from considering and analyzing the Lyapunov inequality given by AT(Ŵ (t),GA)P +PA(Ŵ (t),GA) < 0,

P = PT > 0 (e.g., similar in spirit to the steps taken in the proof of Lemma 3.1 of [95]). In addition,

the existence of ω follows from the fact that (5.73) is Hurwitz when ω = 0 (owing to its upper triangular

structure in this case with Hurwitz matrices Ar and F on the diagonals), and hence, there must exist ω owing

to the continuity on the variations in 0 < Ŵmax,i+( j−1)n ≤ ω . �

The next theorem now presents the main result of this paper.

Theorem 5.2.1 Consider the uncertain dynamical system given by (5.65) subject to Assumption 5.2.1, the

reference model given by (5.69), the actuator dynamics given by (5.66), the adaptive feedback control law
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given by (5.59) along with the update law (5.60), and the observer dynamics given by (5.70). If (k,ω) ∈ κ1,

then the solution (e(t),W̃ (t),xr(t), x̃c(t)) of the closed-loop dynamical system is bounded and

lim
t→∞

e(t) = 0, (5.74)

lim
t→∞

x̃c(t) = 0. (5.75)

Proof. To show Lyapunov stability and guarantee boundedness of the system error state e(t), the

weight error W̃ (t), and the actuator estimate error x̃c(t), consider the Lyapunov function candidate V(e,W̃ ,

x̃c) = eTPe+ γ
−1
1 tr W̃ TW̃ +µ x̃T

c Sx̃c. Note that V(0,0,0) = 0 and V
(
e,W̃ , x̃c

)
> 0 for all

(
e,W̃ , x̃c

)
6= (0,0,0).

Differentiating V
(
e,W̃ , x̃c

)
yields V̇

(
e(t),W̃ (t), x̃c(t)

)
≤ −eT(t)Re(t)− µ x̃T

c (t)x̃c(t) ≤ 0, which guarantees

the Lyapunov stability, and hence, the boundedness of the solution
(
e(t),W̃ (t), x̃c(t)

)
. The rest of the proof

follows by writing the reference model (5.69) and the observer dynamics (5.70) subject to (5.59) as

ẋr(t) = Arxr(t)+B
[
Hx̂c(t)+Ŵ T(t)e(t)+Ŵ T(t)xr(t)

]
, (5.76)

˙̂xc(t) = Fx̂c(t)−GŴ T(t)xr(t)−GŴ T(t)e(t)+GK2c(t)+
1
µ

S−1HTBTPe(t), (5.77)

and then using similar steps to the proof of Theorem 3.1 in [95], and hence, is omitted. �

We now utilize LMIs to satisfy the quadratic stability of (5.73) by following a similar procedure

documented in our recent works (e.g., see[102]). For this purpose, let W i1,...,il ∈ Rn×m be defined as

W i1,...,il =



(−1)i1Ŵmax,1 (−1)i1+nŴmax,1+n . . . (−1)i1+(m−1)nŴmax,1+(m−1)n

(−1)i2Ŵmax,2 (−1)i2+nŴmax,2+n . . . (−1)i2+(m−1)nŴmax,2+(m−1)n

...
...

. . .
...

(−1)inŴmax,n (−1)i2nŴmax,2n . . . (−1)imnŴmax,mn


, (5.78)

where il ∈ {1,2}, l ∈ {1, ...,mn}, such that W i1,...,il represents the corners of the hypercube defining the

maximum variation of Ŵ (t). Utilizing the results in [96, 97], if

Ai1,...,il =

Ar +BW T
i1,...,il BH

−GW T
1,...,il F

 , (5.79)
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satisfies the matrix inequality

AT
i1,...,ilP+PAi1,...,il < 0, P = PT > 0, (5.80)

for all permutations of W i1,...,il , then (5.73) is quadratically stable. Since it is readily shown that (5.73) is

quadratically stable for large values of k, we can cast (5.80) as a convex optimization problem and solve it

using LMIs.

Here, it is important to note that the quadratic stability condition in Lemma 5.2.1, which acts as

a sufficient condition for Theorem 5.2.1 showing the closed-loop model reference adaptive control system

stability in the presence of high-order actuator dynamics with unknown outputs, is identical to Assumption 3

in [104], which acts as a sufficient condition for the case when the high-order actuator outputs are assumed to

be known. Therefore, an important conclusion of this paper is to relax our known actuator output assumption

stated in [104] by utilizing the observer dynamics (5.70) and (5.71) to estimate the unknown actuator output.

In particular, the LMI analysis highlighted above will result in the same feasible region of allowable actuator

dynamics regardless of whether the actuator output is known or unknown, and hence, there is no loss in

relaxing the known actuator output assumption of [104].

5.2.4 Illustrative Numerical Example

To illustrate our contribution presented in Section 5.2.3, we consider the second-order system given

by

ẋ(t) =

0 1

1 1

x(t)+

0

1

v(t), (5.81)

with zero initial conditions. Here, let x1(t) represent the angle in radians and x2(t) represent the angular

rate of change in radians per second. For the high-order actuator dynamics, we consider a single channel

second-order actuator for the control input

F =

 0 1

−ω2
n −2ζ ωn

 , G =

0

1

 , H =

[
ω2

n 0

]
. (5.82)
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Figure 5.4: LMI calculated feasible region for actuator dynamics.

A reference model with zero initial conditions is selected with a natural frequency of ωnr = 1.0 rad/s and a

damping ratio ζr = 0.7, which yields

Ar =

 0 1

−1 −1.4

 , Br =

0

1

 . (5.83)

Furthermore, we use a filtered tracking command c(t), set R = I2 from (5.61) for the proposed adaptive

controller design and set element-wise projection bounds such that
∣∣[Ŵ (t)]1,1

∣∣≤ 2.1 and
∣∣[Ŵ (t)]2,1

∣∣≤ 2.5.

Using the bounds on Ŵ (t) in the LMI analysis highlighted in Section 5.2.3, the feasible region of

allowable actuator dynamics is calculated as depicted in Figure 5.4. Note that Figure 5.4 provides both the

LMI calculated feasible limit as well as the feasible limit provided by the simulation results. Two points are

selected to show the proposed controller performance in Figures 5.5 and 5.6. It can be seen in Figure 5.5

when the actuator dynamics are at the minimum point (ζ ,ωn) = (0.55,4.46), which is located on the feasible

boundary, the system performances remain bounded as guaranteed by the presented theory. In Figure 5.6,

we let the actuator dynamics be outside the calculated feasible region to show that the closed-loop system

remains bounded until the actuator dynamics reach a value of (ζ ,ωn) = (0.55,3.45). This is consistent

with the presented theory, as we provide an upper bound on the allowable actuator dynamics such that the

closed-loop system remains bounded.
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Figure 5.5: Proposed controller performance with actuator dynamics
(
(ζ ,ωn) = (0.55,4.46), γ1 = 100,

µ = 1000
)
.

Figure 5.6: Proposed controller performance with actuator dynamics
(
(ζ ,ωn) = (0.55,3.45), γ1 = 100,

µ = 1000
)
.
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5.2.5 Conclusion

The purpose of this paper was to extend the recent work by the authors to the general case, where

there exist high-order actuator dynamics with unknown outputs in the closed-loop model reference adaptive

control systems. For this purpose, an observer architecture was proposed to provide an estimate of the

unknown output of the actuator dynamics which was then used in the design of the linear matrix inequalities-

based hedging framework. As a result, we were able to relax our previous known actuator output assumption

while retaining the same stability condition. This in turn provides the same feasible region of allowable

actuator dynamics regardless of whether the actuator output is known or unknown.

5.3 Model Reference Adaptive Control in the Presence of Actuator Dynamics with Applications to
the Input Time-Delay Problem3

For computing stability limits of model reference adaptive controllers in the presence of actuator

dynamics, a linear matrix inequalities-based hedging approach was recently proposed by the authors. In this

paper, this approach is generalized to a general class of high-order linear time-invariant actuator dynamics

with throughput term and stability of the closed-loop dynamical system is shown. As a byproduct, the

proposed generalization allows the presented linear matrix inequalities-based hedging approach to be ap-

plied to the input time-delay problem through a finite-order Padé approximation. Two illustrative numerical

examples are included to demonstrate the efficacy of the proposed approach.

5.3.1 Introduction

Although adaptive control theory is an effective methodology to suppress the effect of a wide class of

system uncertainties, it is well known that the presence of actuator dynamics can seriously limit their stability

properties. Motivated from this fact, we proposed a linear matrix inequalities-based hedging approach in a

recent series of papers [95, 102–104] for computing stability limits of model reference adaptive controllers in

the presence of actuator dynamics. Specifically, the hedging method modifies the ideal reference dynamics

in order to allow correct adaptation that is not affected by the presence of actuator dynamics. Specifically,

the stability of the closed-loop dynamical system was shown using Lyapunov theory and linear matrix

inequalities were utilized to compute minimum allowable actuator bandwidth limits.

3This section is previously published in [114]. Permission is included in Appendix B.
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The contribution of this paper is to generalize the linear matrix inequalities-based hedging approach

to a general class of high-order linear time-invariant actuator dynamics with throughput term and show

the stability of the closed-loop dynamical system. As a byproduct, the proposed generalization allows the

approach to be applied to the input time-delay problem through a finite-order Padé approximation. Two

illustrative numerical examples are included to demonstrate the efficacy of the proposed approach.

The notation used throughout this paper is standard. Specifically, R denotes the set of real numbers,

Rn denotes the set of n×1 real column vectors, Rn×m denotes the set of n×m real matrices, R+ (resp. R+)

denotes the set of positive (resp., nonnegative) real numbers, Rn×n
+ (resp., Rn×n

+ ) denotes the set of n× n

positive-definite (resp. nonnegative-definite) real matrices, Dn×n denotes the set of n×n real matrices with

diagonal scalar entries, (·)T denotes the transpose operator, (·)−1 denotes the inverse operator, tr(·) denotes

the trace operator,
∣∣∣∣·∣∣∣∣2 denotes the Euclidian norm,

∣∣∣∣·∣∣∣∣F denotes the Frobenius matrix norm, [A]i j denotes

the ij-th entry of the real matrix A∈Rn×m, λmin(A) (resp., λmax(A)) denotes the minimum (resp., maximum)

eigenvalue of the real matrix A ∈ Rn×n, and “,” denotes the equality by definition.

5.3.2 Mathematical Preliminaries

We now introduce the necessary mathematical preliminaries that are needed to develop the main

results of this paper, beginning with the following definition.

Definition 5.3.1 For a convex hypercube in Rn defined by Ω=
{

θ ∈ Rn : (θ min
i ≤ θi ≤ θ max

i )i=1,2,··· ,n
}

where

(θ min
i ,θ max

i ) represent the minimum and maximum bounds for the ith component of the n-dimensional

parameter vector θ . Additionally, for a sufficiently small positive constant ε , a second hypercube is defined

by Ωε =
{

θ ∈ Rn : (θ min
i + ε ≤ θi ≤ θ max

i − ε)i=1,2,··· ,n
}

where Ωε ⊂ Ω. Then, the projection operator

Proj : Rn×Rn→ Rn is defined compenent-wise by

Proj(θ ,y),



(
θ max

i −θi
ε

)
yi, if θi > θ max

i − ε and yi > 0(
θi−θ min

i
ε

)
yi, if θi < θ min

i + ε and yi < 0

yi, otherwise

(5.84)

where y ∈ Rn [6].
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It follows from Definition 5.3.1 that

(θ −θ
∗)T(Proj(θ ,y)− y)≤ 0, θ

∗ ∈Ωε , (5.85)

holds [6, 82].

Note here that we use a generalization of this definition to matrices as

Projm(Θ,Y ) =
(
Proj(col1(Θ),col1(Y )), . . . , Proj(colm(Θ),colm(Y ))

)
, (5.86)

where Θ ∈ Rn×m, Y ∈ Rn×m, and coli(·) denotes the i-th column operator. In this case, for a given Θ∗, it

follows from (5.85) that

tr
[
(Θ−Θ

∗)T(Projm(Θ,Y )−Y )
]

=
m

∑
i=1

[
coli(Θ−Θ

∗)T(Proj(coli(Θ),coli(Y ))− coli(Y ))
]
≤ 0, (5.87)

holds.

We now briefly overview the standard model reference control problem [5–7]. Specifically, consider

the uncertain dynamical system given by

ẋ(t) = Ax(t)+Bu(t), x(0) = x0, (5.88)

where x(t) ∈ Rn is the state vector available for feedback, u(t) ∈ Rm is the control input restricted to the

class of admissible controls consisting of measurable functions, A ∈ Rn×n is an unknown system matrix,

B ∈ Rn×m is a known input matrix, and the pair (A,B) is controllable.

Next, consider the reference model capturing a desired, ideal closed-loop dynamical system perfor-

mance given by

ẋr(t) = Arxr(t)+Brc(t), xr(0) = xr0, (5.89)

where xr(t)∈Rn is the reference state vector, c(t)∈Rm is a given uniformly continuous bounded command,

Ar ∈Rn×n is the Hurwitz reference model matrix, and Br ∈Rn×m is the command input matrix. The objective
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of the model reference adaptive control problem is to construct an adaptive feedback control law u(t) such

that the state vector x(t) asymptotically follows the reference state vector xr(t).

It can be assumed, as is standard [5–7], that there exists an unknown matrix K1 ∈Rm×n and a known

matrix K2 ∈ Rm×m such that Ar , A−BK1 and Br , BK2 hold. It follows that (5.88) can be written as

ẋ(t) = Arx(t)+Brc(t)+B
[
u(t)+W T

1 x(t)−K2c(t)
]
, (5.90)

where W1 , KT
1 ∈ Rn×m is unknown. Now, let the adaptive feedback control law be given by

u(t) = −Ŵ T
1 (t)x(t)+K2c(t), (5.91)

where Ŵ1(t) ∈ Rn×m is the estimate of W1 satisfying the weight update law

˙̂W1(t) = γ1Projm
[
Ŵ1(t), x(t)eT(t)PB

]
, Ŵ1(0) = Ŵ10, (5.92)

with γ1 ∈ R+ being the learning rate, e(t) , x(t)− xr(t) being the system error state vector, and P ∈ Rn×n
+

being the solution of the Lyapunov equation given by

0 = AT
r P+PAr +R, (5.93)

R ∈Rn×n
+ . Note that since Ar is Hurwitz, it follows from the converse Lyapunov theory [80] that there exists

a unique P satisfying (5.93) for a given R. In addition, the projection bounds are defined such that

∣∣[Ŵ1(t)]i j
∣∣≤ Ŵ1,max,i+( j−1)n, (5.94)

for i = 1, ...,n and j = 1, ...,m, where Ŵ1,max,i+( j−1)n ∈ R+ denotes element-wise projection bounds.

Now, using (5.91) in (5.90) along with (5.89), the system error dynamics can be written as

ė(t) = Are(t)−BW̃ T
1 (t)x(t), e(0) = e0, (5.95)

where W̃1(t), Ŵ1(t)−W1 ∈ Rn×m.
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The weight update law given by (5.92) can be derived using Lyapunov analysis by considering the

Lyapunov function candidate given by (see, for example, [5–7])

V(e,W̃1) = eTPe+ γ
−1
1 tr W̃ T

1 W̃1. (5.96)

Note that V(0,0) = 0 and V(e,W̃1) > 0 for all (e,W̃1) 6= (0,0). Now, differentiating (5.96) yields V̇(e(t),

W̃1(t)) ≤ −eT(t)Re(t) ≤ 0, which guarantees that the system error state vector e(t) and the weight error

W̃1(t) are Lyapunov stable, and hence, are bounded for all t ∈ R+. Since x(t) is bounded for all t ∈ R+, it

follows from (5.95) that ė(t) is bounded, and hence, V̈(e(t),W̃1(t)) is bounded for all t ∈R+. It then follows

from Barbalat’s lemma that limt→∞ V̇
(
e(t),W̃1(t)

)
= 0, which consequently shows that e(t)→ 0 as t→ ∞.

Note that this highlights that the adaptive control formulation overviewed in this section has the

capability to suppress the effect of system uncertainties to achieve desirable tracking performance specifica-

tions. Yet, it does not provide any guarantees in the presence actuator dynamics that appear in any practical

application of adaptive controllers.

5.3.3 Adaptive Control in the Presence of High-Order Linear Time-Invariant Actuator Dynamics
with Throughput Term

For the model reference adaptive control design in the presence of high-order linear time-invariant

actuator dynamics with throughput term, we now generalize the linear matrix inequalities-based hedging

approach of [95, 102–104]. Specifically, consider the uncertain dynamical system given by

ẋ(t) = Ax(t)+Bv(t), x(0) = x0, (5.97)

where v(t) ∈ Rm is the actuator output of the actuator dynamics GA given by

ẋc(t) = Fxc(t)+Gu(t), xc(0) = xc0,

v(t) = Hxc(t)+ Ju(t),
(5.98)

with xc(t) ∈ Rl being the actuator state vector, G ∈ Rl×m being the actuator input matrix, H ∈ Rm×l being

the actuator output matrix, F ∈ Rl×l being a Hurwitz matrix, and J ∈ Rm×m being the throughput matrix.
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By adding and subtracting Bu(t), (5.97) can be rewritten as

ẋ(t) = Arx(t)+Brc(t)+B
[
u(t)+W T

1 (t)x(t)−K2c(t)
]
+B
[
v(t)−u(t)

]
. (5.99)

Now, based on the novel hedging approach originally proposed in [30, 31, 33], we consider the modified

reference model dynamics given by

ẋr=Arxr(t)+Brc(t)+B
[
v(t)−u(t)

]
, xr(0)=xr0, (5.100)

such that with the adaptive feedback control law given by (5.91) and (5.92), the system error dynamics

follows from (5.99) and (5.100) as

ė(t) = Are(t)−BW̃ T
1 (t)x(t), e(0) = e0. (5.101)

Note that (5.101) is identical to the system error dynamics given by (5.95) due to the fact that the hedging

signal B
[
v(t)−u(t)

]
is introduced to the ideal reference model dynamics. The next theorem establishes the

stability of the closed-loop dynamical system as well as the boundedness of the modified reference model

dynamics predicated on linear matrix inequalities.

Theorem 5.3.1 Consider the uncertain dynamical system given by (5.97), the reference model given by

(5.100), the actuator dynamics given by (5.98), and the adaptive feedback control law given by (5.91) along

with the update law (5.92). In addition, let

A(Ŵ1(t),GA) =

Ar +BŴ T
1 (t)−BJŴ T

1 (t) BH

−GŴ T
1 (t) F

 , (5.102)

be quadratically stable. Then, the solution (e(t),W̃1(t),xr(t),v(t)) of the closed-loop dynamical system is

bounded and limt→∞ e(t) = 0.

Proof. To show Lyapunov stability and guarantee boundedness of the system error state e(t) and the

weight error W̃1(t), consider the Lyapunov function candidate given by (5.96). Differentiating (5.96) yields

V̇
(
e(t),W̃1(t)

)
≤−eT(t)Re(t)≤ 0, which guarantees the Lyapunov stability, and hence, the boundedness of

the solution
(
e(t),W̃1(t)

)
.
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To show the boundedness of xr(t) and xc(t) (and hence, v(t)), consider the reference model (5.100)

and the actuator dynamics (5.98) subject to (5.91) as

ẋr(t) = Arxr(t)+Brc(t)+B
[
Hxc(t)+(I− J)

(
Ŵ T

1 (t)x(t)−K2c(t)
)]

=
(
Ar +B(I− J)Ŵ T

1 (t)
)

xr(t)+BHxc(t)+B(I− J)Ŵ T
1 (t)e(t)+BJK2c(t), (5.103)

ẋc(t) = Fxc(t)−GŴ T
1 (t)xr(t)−GŴ T

1 (t)e(t)+GK2c(t), (5.104)

where (5.103) and (5.104) can be rewritten in compact form as

ξ̇ (t) = A(Ŵ1(t),GA)ξ (t)+ω(·), (5.105)

with ξ (t) = [xT
r (t),x

T
c (t)]

T and

ω(·) =

B(I− J)Ŵ T
1 (t)e(t)+BJK2c(t)

−GŴ T
1 (t)e(t)+GK2c(t)

 . (5.106)

Note that ω(·) in (5.105) is a bounded perturbation as a result of Lyapunov stability of the pair (e(t),W̃1(t)).

Now, it follows that since ω(·) is bounded and A(Ŵ1(t),GA) is quadratically stable, then xr(t) and xc(t) are

also bounded [88]. This further implies that the actuator output v(t) is bounded.

To show limt→∞ e(t) = 0, note that x(t) is bounded as a consequence of the boundedness of e(t)

and xr(t). It now follows from (5.101) that ė(t) is bounded, and hence, V̈(e(t),W̃1(t)) is bounded. As a

consequence of the boundedness of V̈(e(t),W̃1(t)) and Barbalat’s lemma [88], limt→∞ V̇
(
e(t),W̃1(t)

)
= 0,

and hence, limt→∞ e(t) = 0. �

We now utilize linear matrix inequalities to satisfy the quadratic stability of (5.102) by following a

similar procedure documented in our recent works [95, 102–104]. For this purpose, let W 1i1 ,...,il
∈ Rn×m be

defined as

W 1i1 ,...,il
=



(−1)i1Ŵ1,max,1 (−1)i1+nŴ1,max,1+n . . . (−1)i1+(m−1)nŴ1,max,1+(m−1)n

(−1)i2Ŵ1,max,2 (−1)i2+nŴ1,max,2+n . . . (−1)i2+(m−1)nŴ1,max,2+(m−1)n

...
...

. . .
...

(−1)inŴ1,max,n (−1)i2nŴ1,max,2n . . . (−1)imnŴ1,max,mn


, (5.107)
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where il ∈ {1,2}, l ∈ {1, ...,2mn}, such that W 1i1 ,...,il
represents the corners of the hypercube defining the

maximum variation of Ŵ1(t). Utilizing the results in [96, 97], if

Ai1,...,il =

Ar +BW T
1i1 ,...,il

−BJW T
1i1,...,il

BH

−GW T
1i1 ,...,il

F

 , (5.108)

satisfies the matrix inequality

AT
i1,...,ilP+PAi1,...,il < 0, P = PT > 0, (5.109)

for all permutations of W 1i1 ,...,il
, then (5.102) is quadratically stable. We can then cast (5.109) as a convex

optimization problem and solve it effectively using linear matrix inequalities.

5.3.4 Illustrative Numerical Examples

In order to illustrate the proposed linear matrix inequalities-based hedging approach to adaptive

control, we consider an application to the input time-delay problem, where for the following dynamical

system given by

ẋ(t) = Ax(t)+Bu(t− τ), x(0) = x0, (5.110)

is considered. Note that (5.110) can be approximated in the from given by (5.97) and (5.98) using the Padé

approximation for u(t− τ) term. To this end, consider the following examples.

For the first example, we consider the scalar example presented in [115] given by

ṗ(t) = Lp p(t)+Lδaδa(t), (5.111)

which represents the roll dynamics with p(t) being the roll rate in radians per second, δa(t) being the total

differential aileron-spoiler deflection in radians, Lp being an unknown roll damping derivative, and Lδa being

a known dimensional rolling moment derivative.

As in [115], we set Lp =−0.8(s−1) and Lδa = 1.6(s−1) and let the reference model be

ṗr(t) = −2pr(t)+2pcmd(t). (5.112)
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In addition, the projection bounds are chosen as in [115] such that
∣∣Ŵ1(t)

∣∣≤ 2.7. In the context of standard

model reference adaptive control design, the maximum allowable time-delay is calculated to be τ∗ =

0.024(s) in [115], where the actual time-delay is determined numerically to be around 0.38(s) [116]. Using

the proposed linear matrix inequalities-based hedging approach of Section 5.3.3, the linear matrix inequality

calculations are carried out up to the fifth order Padé approximation as shown in Figure 5.7. It can be seen

from the figure that our results are much less conservative. As the order of the Padé is increased, our

time-delay margin converges to τ∗ = 0.269(s).
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Figure 5.7: Comparison of the maximum allowable input time-delay between proposed approach of this
paper and the results in [115].

For the second example, we now consider a second order dynamical system given by

ẋ(t) =

0 1

1 1

x(t)+

0

1

u(t− τ), x(0) = x0. (5.113)

We select a reference model with a natural frequency of ωn = 1.0 rad/s and a damping ratio ζ = 0.7 such

that

Ar =

 0 1

−1 −1.4

 , Br =

0

1

 , (5.114)
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hold. Using the rectangular projection operator, the bounds on the uncertainty are set element-wise such that∣∣[Ŵ1(t)]1,1
∣∣ ≤ 2.1 and

∣∣[Ŵ1(t)]2,1
∣∣ ≤ 2.5. Then using the proposed linear matrix inequalities-based hedging

approach, the linear matrix inequality calculations are carried out up to the fifth order Padé approximation as

shown in Figure 5.8. It can be seen from the figure that as the order of the Padé is increased, our time-delay

margin converges to τ∗ = 0.3(s).
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Figure 5.8: Linear matrix inequality calculated maximum allowable input time-delay.

Figures 5.9 and 5.10 show the the proposed controller performance with input time-delay. Since it is

calculated that the allowable maximum time-delay margin is τ∗ = 0.3(s), it is theoretically expected that the

system performances are guaranteed to be bounded for time-delay values less than or equal to the calculated

maximum. Figures 5.9 and 5.10 illustrate this statement, in which Figure 5.9 shows the system performance

is bounded for the linear matrix inequality calculated maximum time-delay margin of τ∗ = 0.3(s), and

remains bounded until a time-delay value of τ∗ = 0.4(s) is applied in Figure 5.10.
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Figure 5.9: Proposed controller performance with input time-delay (τ∗ = 0.3(s), γ = 10).
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Figure 5.10: Proposed controller performance with input time-delay (τ∗ = 0.4(s), γ = 10).

120



www.manaraa.com

5.3.5 Conclusion

We generalized the linear matrix inequalities-based hedging approach of [95, 102–104] to a general

class of high-order linear time-invariant actuator dynamics with throughput term and showed the stability

of the closed-loop dynamical system. Through a finite-order Padé approximation, the proposed generalized

allowed the presented approach to be applied to the input time-delay problem. The efficacy of the proposed

approach was demonstrated through two different illustrative numerical examples.

5.4 Computing the Stability Limits of Pole-Zero Actuator Dynamics on Adaptive Control Laws for
Aerospace Applications4

This paper illustrates an application of a linear matrix inequality-based hedging approach for model

reference adaptive control in the presence of pole-zero actuator dynamics. Specifically, this approach uses a

hedging signal to alter a given reference model trajectory such that adaptation is not effected by the presence

of actuator dynamics, then it uses linear matrix inequalities (LMIs) to compute the stability limits of the

adaptive control law as a result of the hedged reference model. In order to demonstrate the capability of the

proposed approach in providing safe and predictable limits, multiple cases of pole-zero actuator dynamics

are considered on the short-period dynamics of a hypersonic vehicle model, where a feasible region of safe

actuation is computed for each pole-zero configuration.

5.4.1 Introduction

Stability limits of adaptive controllers in the presence of actuator dynamics is a well-known prob-

lem. In recent papers by the authors [95, 101–105, 114, 118], a new approach has been proposed using

a hedged reference model and linear matrix inequalities (LMIs) to compute stability limits of adaptive

controllers. In particular, we have considered a wide range of generalizations of the proposed framework,

including the cases known and unknown control input, known and unknown actuator output, linear and

nonlinear uncertainties, and first-order and high-order actuator dynamics. In our most recent work [118], an

application to a hypersonic vehicle model is also included for first-order actuator models.

While it is possible to represent actuator models as first order dynamics using different assumptions

and a reduction of order, more accurate actuator models for aerospace applications are better represented by

higher order dynamics, often with a zero and multiple (usually two or three) poles. The differences between

4This section is previously published in [117]. The copyright is owned by the author (see Appendix B).
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these models can drastically effect the closed-loop stability. Motivated from this standpoint, the purpose

of this paper is to demonstrate the capability of the proposed LMI-based hedging approach to provide safe

and predictable limits for a few relevant actuator models with a zero and multiple poles, as well as different

control effectiveness by means of the static gain of the actuator model. Specifically, we consider multiple

cases of pole-zero actuator dynamics for the short-period dynamics of a hypersonic vehicle model, where a

feasible region of safe actuation is computed for each pole-zero configuration.

The notation used in this paper is fairly standard and similar to, for example, [95]. For self-

containedness, note that R denotes the set of real numbers, Rn denotes the set of n×1 real column vectors,

Rn×m denotes the set of n×m real matrices, R+ (respectiely, R+) denotes the set of positive (respectively,

nonnegative) real numbers, Rn×n
+ (respectively, Rn×n

+ ) denotes the set of n×n positive-definite (respectively,

nonnegative-definite) real matrices, and “,” denotes equality by definition. In addition, we write (·)T for

the transpose operator and (·)−1 for the inverse operator.

5.4.2 The LMI-Based Hedging Approach for Adaptive Control: A Concise Overview

5.4.2.1 Uncertain Dynamical System with Actuator Dynamics

We now present a concise overview of the LMI-based hedging approach in the presence of actuator

dynamics, where we refer to [95, 101–105, 114, 118] for details. Specifically, here we consider the uncertain

dynamical system given by

ẋp(t) = Apxp(t)+Bp
[
v(t)+W Txp(t)

]
, xp(0) = xp0, (5.115)

where xp(t) ∈ Rnp is a measurable state, Ap ∈ Rnp×np and Bp ∈ Rnp×m are known system matrices (with the

pair (Ap,Bp) assumed to be controllable), W ∈ Rnp×m is an unknown weight matrix, and v(t) ∈ Rm is an

actuator output of the actuator dynamics GA given by

ẋa(t) = Fxa(t)+Gu(t), xa(0) = xa0, (5.116)

v(t) = Hxa(t), (5.117)

with xa(t) ∈ Rp being the actuator state vector, G ∈ Rp×m being the actuator input matrix, H ∈ Rm×p being

the actuator output matrix, and F ∈Rp×p being a Hurwitz matrix such that there exists S∈Rp×p
+ that satisfies

0 = FTS+SF + I. (5.118)
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5.4.2.2 Adaptive Control for Command Following

To address command following, let c(t) ∈Rnc be a given piecewise continuous reference command

and xc(t) ∈ Rnc be the integrator state satisfying

ẋc(t) = Epxp(t)− c(t), xc(0) = xc0. (5.119)

Here, Ep ∈ Rnc×np allows the selection of a subset of xp(t) to follow c(t). Considering (5.115) and (5.119),

the augmented dynamics can be written as

ẋ(t) =

Ap 0np×nc

Ep 0nc×nc


︸ ︷︷ ︸

A

x(t)+

 Bp

0nc×m


︸ ︷︷ ︸

B

[
v(t)+W Txp(t)

]
+

 0np×nc

−Inc×nc


︸ ︷︷ ︸

Br

c(t), x(0) = x0, (5.120)

where x(t) , [xT
p (t),x

T
c (t)]

T ∈ Rn, A ∈ Rn×n, B ∈ Rn×m, Br ∈ Rn×nc , and n = np + nc. It follows by adding

and subtracting Bu(t) that (5.120) can be written as

ẋ(t) = Ax(t)+Brc(t)+B
[
u(t)+W Txp(t)

]
+B
[
v(t)−u(t)

]
. (5.121)

Next, let the feedback control law be given by

u(t) = −Kx(t)−Ŵ T(t)xp(t), (5.122)

where K ∈ Rm×n is the nominal feedback gain designed such that Ar , A−BK ∈ Rn×n is Hurwitz and

Ŵ (t) ∈ Rnp×m is an estimate of W satisfying the weight update law

˙̂W (t) = γProjm
[
Ŵ (t), xp(t)eT(t)PB

]
, Ŵ (0) = Ŵ0, (5.123)

with γ ∈ R+ being the learning rate, e(t) , x(t)− xr(t) being the system error state vector (xr(t) is the

state vector of the reference model which will be provided shortly), and P ∈ Rn×n
+ being the solution of the

Lyapunov equation given by

0 = AT
r P+PAr +R, R ∈ Rn×n

+ . (5.124)

In (5.123), the projection operator is used, and hence, we need its definition [6].
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Definition 5.4.1 Let Ω=
{

θ ∈ Rn : (θ min
i ≤ θi ≤ θ max

i )i=1,2,...,n
}

be a convex hypercube in Rn, where (θ min
i ,

θ max
i ) represent the minimum and maximum bounds for the ith component of the n-dimensional parameter

vector θ . In addition, let Ωε =
{

θ ∈ Rn : (θ min
i + ε ≤ θi ≤ θ max

i − ε)i=1,2,...,n
}

be a second hypercube for a

sufficiently small positive constant ε , where Ωε ⊂Ω. With y ∈Rn, the projection operator Proj : Rn×Rn→

Rn is then defined compenent-wise by

Proj(θ ,y),



(
θ max

i −θi
ε

)
yi, if θi > θ max

i − ε and yi > 0,(
θi−θ min

i
ε

)
yi, if θi < θ min

i + ε and yi < 0,

yi, otherwise.

(5.125)

In the light of Definition 5.4.1, it follows that Proj(θ −θ ∗)T (Proj(θ ,y)− y) ≤ 0 (see [6, 82] for

details). Note that this definition can also be generalized to matrices as Projm(Θ,Y ) =
(
Proj(col1(Θ),

col1(Y )), . . . ,Proj(colm(Θ),colm(Y ))
)
, where Θ ∈ Rn×m, Y ∈ Rn×m, and coli(·) denotes ith column oper-

ator. In particular, for a given matrix Θ∗, it follows from Proj(θ −θ ∗)T (Proj(θ ,y)− y) ≤ 0 that
[
(Θ−

Θ∗)T(Projm(Θ,Y )−Y )
]
= ∑

m
i=1
[
coli(Θ−Θ∗)T(Proj(coli(Θ),coli(Y ))− coli(Y ))

]
≤ 0. Now, with regard

to (5.123), the projection bounds are defined such that |[Ŵ (t)]i j| ≤ Ŵmax,i+( j−1)np for i = 1, ...,np and

j = 1, ...,m, where Ŵmax,i+( j−1)np ∈ R+ denotes symmetric element-wise projection bounds.

Now, using (5.122) in (5.121), we can write

ẋ(t) = Arx(t)+Brc(t)−BW̃ T(t)xp(t)+B
[
v(t)−u(t)

]
, (5.126)

where W̃ (t) , Ŵ (t)−W ∈ Rnp×m is the weight estimation error. Motivated by the structure of (5.126), we

use the hedging approach [30, 31, 33] to design the modified reference model as

ẋr = Arxr(t)+Brc(t)+B
[
v(t)−u(t)

]
, xr(0) = xr0, (5.127)

where xr(t) ∈ Rn is the reference state vector and Ar ∈ Rn×n is the reference model matrix, such that the

system error dynamics follow from (5.126) and (5.127) as

ė(t) = Are(t)−BW̃ T(t)xp(t), e(0) = e0. (5.128)
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The following theorem (see the aforementioned papers above for proof details) presents the stability

of the proposed adaptive control architecture in the presence of actuator dynamics. For this purpose, we note

that N = [Inp×np ,0np×nc ] ∈ Rnp×n.

Theorem 5.4.1 Consider the uncertain dynamical system given by (5.115), the integrator dynamics given

by (5.119), the actuator dynamics given by (5.116) and (5.117), the reference model given by (5.127), the

feedback control law given by (5.122), and the update law given by (5.123). In addition, let

A
(
Ŵ (t),GA

)
=

 A+BŴ T(t)N BH

−G
(
K +Ŵ T(t)N

)
F

 (5.129)

be quadratically stable for all Ŵ (t) satisfying the projection based weight update law given by (5.123), then

the solution
(
e(t),W̃ (t)

)
of the closed-loop dynamical system is bounded and limt→∞ e(t) = 0.

5.4.2.3 Utilizing LMIs for Safe Adaptive Control

To satisfy the quadratic stability [97] condition in Theorem 5.4.1, we use LMIs for given projection

bounds Ŵmax on the elements of Ŵ (t). To elucidate this important point, let W i1,...,il ∈ Rnp×m be defined as

W i1,...,il =



(−1)i1Ŵmax,1 (−1)i1+npŴmax,1+np . . . (−1)i1+(m−1)npŴmax,1+(m−1)np

(−1)i2Ŵmax,2 (−1)i2+npŴmax,2+np . . . (−1)i2+(m−1)npŴmax,2+(m−1)np

...
...

. . .
...

(−1)inpŴmax,np (−1)i2npŴmax,2np . . . (−1)imnpŴmax,mnp


, (5.130)

where il ∈ {1,2}, l ∈ {1, ...,2mnp}, such that W i1,...,il represents the corners of the hypercube defining the

maximum variation of Ŵ (t), and let

Ai1,...,il =

 A+BW T
i1,...,il N BH

−G
(
K +W T

i1,...,il N
)

F

 , (5.131)

be the corners of the hypercube constructed from all the permutations of W i1,...,il . For given actuator

dynamics GA, it can then be shown that

AT
i1,...,ilP+PAi1,...,il < 0, P > 0, (5.132)
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implies thatAT
(
Ŵ (t),GA

)
P+PA

(
Ŵ (t),GA

)
< 0 [96, 99]. As a consequence, one can solve the LMI given

by (5.132) for all permutations of W i1,...,il to conclude the quadratic stability condition holds. Furthermore,

(5.132) can be cast as a convex optimization problem to determine the feasible region for the actuator

dynamics given the projection bounds Ŵmax on the elements of Ŵ (t) which are designed based on the

allowable system uncertainties.

This is important because we want to obtain a computable limit such that any actuator with dynam-

ical characteristics captured within the computed feasible region is guaranteed to allow for safe adaptive

control of the uncertain dynamical system. To do this, we need a way to start from an initial feasible point

and then search in all directions of the dynamical parameters, for the feasible limit. By doing so, the entire

region found through the search is guaranteed to be feasible. Besides starting from an initial feasible point,

the other requirement for the search is that the parameters of the actuator dynamics are affinely parameterized

such that satisfying (5.132) still implies AT
(
Ŵ (t),GA

)
P+PA

(
Ŵ (t),GA

)
< 0 [96, 99].

With this in mind, we next show how we can affinely parameterize the actuator dynamics to fit the

form of (5.132), and then search for the limit of all feasible parameter combinations thereby creating our

feasible region. For this purpose, consider the actuator model given as

GA(s) =
ap−1sp−1 +ap−2sp−2 + · · ·+a1s+a0

sp +bp−1sp−1 + · · ·+b1s+b0
, (5.133)

which can be written in controllable canonical form as (5.116) and (5.117) with the matrices

F =



0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

−b0 −b1 −b2 . . . −bp−1


, G =



0

0
...

0

1


, H =

[
a0 a1 a2 . . . ap−1

]
. (5.134)

Note here that we use the controllable canonical form of GA(s) to keep the term −G
(
K +W T

i1,...,il N
)

in

(5.131) affine. Now, since we are interested in determining how the parameters ak and bk, k = 0,1, ..., p−1

of the actuator matrices, can be varied from initial feasible values such that (5.132) still holds, we let ak ,

afeas
k − δak and bk , bfeas

k − δbk, where afeas
k and bfeas

k indicate the initial feasible values (i.e., the actuator

is sufficiently “fast” for these values) and δak and δbk are the variation in the paramaters such that we can
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incrementally decrease from the feasible starting point. It then follows that the matrices F and H in (5.134)

can be written as

F =



0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

−bfeas
0 −bfeas

1 −bfeas
2 . . . −bfeas

p−1


︸ ︷︷ ︸

F feas

+δb0

 0(p−1)×1 0(p−1)×(p−1)

1 01×(p−1)


︸ ︷︷ ︸

F0

+δb1

 0(p−1)×2 0(p−2)×(p−2)

0 1 01×(p−2)


︸ ︷︷ ︸

F1

+ · · ·+δbp−1

 0(p−1)×(p−1) 0(p−1)×1

01×(p−1) 1


︸ ︷︷ ︸

Fp−1

(5.135)

H =

[
afeas

0 afeas
1 afeas

2 . . . afeas
p−1

]
︸ ︷︷ ︸

Hfeas

+δa0

[
−1 0 . . . 0

]
︸ ︷︷ ︸

H0

+δa1

[
0 −1 . . . 0

]
︸ ︷︷ ︸

H1

+ · · ·+δap−1

[
0 0 . . . −1

]
︸ ︷︷ ︸

Hp−1

. (5.136)

Using (5.135) and (5.136) we can reconstruct (5.131) as

Ai1,...,il =

 A+BW T
i1,...,il N BHfeas

−G
(
K +W T

i1,...,il N
)

F feas


︸ ︷︷ ︸

Afeas
i1 ,...,il

+
p−1

∑
k=0

δak

0n×n BHk

0p×n 0p×p

+ p−1

∑
k=0

δbk

0n×n 0n×p

0p×n Fk

 . (5.137)

Now using the parameterized form given by (5.137), we start the search from initial feasible values afeas
k

and bfeas
k , k = 0,1, ..., p−1, with δak = 0 and δbk = 0, k = 0,1, ..., p−1, such that all initial corners of the

hypercube constructed from all the permutations of W i1,...,il (i.e Afeas
i1,...,il ) satisfy (5.132). Then the search is

conducted to find the largest variations in δak and δbk, k = 0,1, ..., p−1 such that (5.132) is still satisfied.

To further elucidate the proposed approach, Algorithm Feasible Region Search describes this process to

compute this feasible region of ak and bk parameters of the actuator dynamics, where the optimization is

carried out using YALMIP [119], but other solvers can also be used [120].
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Algorithm 1 Feasible Region Search
Data: A,B,K,N,Ŵmax,i+( j−1)np ,a

feas
k ,bfeas

k ,εtol

Result: ak,bk

for δa0 = 0 : εtol : afeas
0 do

for δa1 = 0 : εtol : afeas
1 do

...

for δap−1 = 0 : εtol : afeas
p−1 do

for δb0 = 0 : εtol : bfeas
0 do

for δb1 = 0 : εtol : bfeas
1 do

...

for δbp−1 = 0 : εtol : bfeas
p−1 do

if AT
i1,...,ilP+PAi1,...,il < 0 and P > 0 then
Continue

else
Break

end

end

ak = afeas
k −δak, k = 0,1, ..., p−1

bk = bfeas
k −δbk, k = 0,1, ..., p−1

Save (a0,a1, ...,ap−1,b0,b1, ...,bp−1)

end

end

end

end

end

Now, using the above LMI analysis and search algorithm, we are able to compute feasible regions

for the actuator dynamics such that safe adaptation is guaranteed. In the next section, we use this method

to compute the limits for higher order actuator models for the control of the short-period dynamics of a

hypersonic vehicle model.
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5.4.3 Evaluation of LMI-Based Hedging Approach for Adaptive Control of a Hypersonic Vehicle
Model with Pole-Zero Actuator Dynamics

To elucidate our proposed approach to the actuator dynamics problem, we provide the following

application to a hypersonic vehicle. Consider the uncertain hypersonic vehicle short-period dynamics given

by

ẋp(t) =

−2.39×10−1 1

4.26 −1.19×10−1

xp(t)+

−1.33×10−4

−1.84×10−1

(v(t)+W Txp(t)
)
, (5.138)

with zero initial conditions and the state vector being defined as xp(t) = [α(t),q(t)]T, where α(t) denotes the

angle-of-attack and q(t) denotes the pitch rate. The uncertainty is considered to be W = [−100 .01]T such

that it dominantly and excessively effects the stability derivative Cmα
. Specifically, the value −100 creates a

400% increase in Cmα
, destabilizing the nominal closed-loop system, whereas the second value 0.01 can be

considered to be small since it will not effect the closed-loop performance of the hypersonic vehicle which

is lightly damped. In addition, v(t) is the actuator output of the actuator dynamics which we represent in the

frequency domain as

V (s) = GA(s)∆e(s), (5.139)

where ∆e(s) denotes the elevator deflection command. Linear quadratic regulator (LQR) theory [91] is used

to design the nominal controller for the proposed control design, with Ep = [1, 0] such that a desired angle-

of-attack command is followed. The controller gain matrix K is obtained using the highlighted augmented

formulation, along with the weighting matrices Q = diag[2000, 25, 400000] to penalize the states and

R = 12.5 to penalize the control input, resulting in the gain matrix K =

[
−135.9 −37.7 −178.9

]
, which

has a desirable 60.4◦ phase margin and a crossover frequency of 6.75 Hz. In addition, we set the element-

wise projection bounds as
∣∣[Ŵ (t)]1,1

∣∣ ≤ 105 and
∣∣[Ŵ (t)]2,1

∣∣ ≤ 0.1, such that we obtain the permutations

defining the maximum variation of Ŵ (t) as

W 1 =

105

0.1

 , W 2 =

−105

0.1

 , W 3 =

 105

−0.1

 , and W 4 =

−105

−0.1

 .
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Using all the permutations of W i, i = 1, ...,4 the corners of the hypercube are then constructed as

Ai =

 A+BW T
i N BH

−G
(
K +W T

i N
)

F

 , i = 1, ...,4. (5.140)

The purpose of the rest of this section is to analyze the effect of different actuator dynamics on

the allowable feasible region for safe adaptive control. In light of this, the information above is all that

is necessary to conduct the LMI analysis highlighted in Section 5.4.2.3 such that the feasible region can

be computed using Algorithm 1 Feasible Region Search. Even though time response simulations of the

controller performance are not included in this analysis, it should be noted that the selected feedback gain

matrix K is tuned for desirable nominal control performance and the uncertainty given by W deteriorates

the nominal controller performance such that the proposed adaptive controller is necessary for extracting a

desirable performance from the uncertain dynamical system. For additional details including time response

simulations of the performance of the proposed control design, the reader is directed to [118]. To thoroughly

analyze the effect on the feasible region by higher order actuator dynamics, we divide this section into three

subsections in which we first consider a second order actuator model, then add a zero to this second order

model, and finally add a pole along with the zero such that the final actuator model considered is a third

order system with one zero and three poles.

5.4.3.1 Computing Limits for Second Order Actuator Dynamics

In this subsection, we begin with a second order actuator model which is then be used as a baseline

for comparison with the actuator models presented in the remaining subsections. For this purpose, consider

the actuator dynamics given in the frequency domain as

GA(s) =
Kaω2

n

s2 +2ζ ωns+ω2
n
, (5.141)

where Ka is the static gain, ωn is the natural frequency, and ζ is the damping ratio. It follows that (5.141)

can be written as in (5.116) and (5.117) with

F =

 0 1

−ω2
n −2ζ ωn

 , G =

0

1

 , H =

[
Kaω2

n 0

]
. (5.142)
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In order to use Algorithm 1 Feasible Region Search, it is necessary for (5.142) to be affinely

parameterized. For this purpose, let a0 = b0 = ω2
n and b1 = 2ζ ωn, where the static gain Ka is not included

in a0 to more conveniently visualize its effect. This is done by fixing Ka at different values and then running

the search algorithm for the remaining parameters and plotting the resulting 2-D figure. Since a0 = b0, the

F and H actuator matrices in (5.142) can be written as

F =

 0 1

−bfeas
0 −bfeas

1


︸ ︷︷ ︸

F feas

+δb0

0 0

1 0


︸ ︷︷ ︸

F1

+δb1

0 0

0 1


︸ ︷︷ ︸

F2

, (5.143)

H =

[
Kabfeas

0 0

]
︸ ︷︷ ︸

Hfeas

+δb0

[
−Ka 0

]
︸ ︷︷ ︸

H1

+δb1

[
0 0

]
︸ ︷︷ ︸

H2

. (5.144)

Furthermore, the corners of the hypercube given by (5.140) can now be represented as

Ai =

 A+BW T
i BHfeas

−G
(
K +W T

i N
)

F feas

+δb0

03×3 BH1

02×3 F1

δb1

03×3 BH2

02×3 F2

 . (5.145)

Now, starting at the initial feasible values bfeas
0 = 8100 and bfeas

1 = 270 (i.e., ωn = 90 and ζ = 1.5) we use

Algorithm 1 Feasible Region Search to obtain the feasible region of b0 and b1, and then map it back to

ωn and ζ (i.e., ωn =
√

b0 and ζ = b1
2
√

b0
). The resulting feasible region of allowable actuator dynamics is

shown in Figure 5.11 with different fixed static gain Ka values between 0.65 and 3.0. Specifically, it can

be concluded from the figure that any actuator with dynamical characteristics above all the computed limits

can be used for safe adaptive control of the considered hypersonic vehicle in the respective range of static

gain values. For example, if the actuator considered has the pair (ζ ,ωn) = (0.55,30), it can be concluded

that safe actuation is guaranteed for Ka ∈ [0.65,3.0]. Furthermore, it can be seen from the figure that when

Ka < 1 (Ka = 1 is indicated by the black dashed trace), the feasible region gets smaller due to the more

dramatic increase in necessary ωn values. In addition, it is evident that the feasible regions also decreases

when Ka > 1, such that Ka = 1 can be concluded to be the optimum static gain value in that it provides the

largest feasible region.

It should be noted that another way to investigate this problem is by considering the uncertainty in

the static gain Ka as part of an unknown control effectiveness which would then be used to build the corners

131



www.manaraa.com

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
ζ

5

10

15

20

25

30

35

40

45

ω
n

Ka = 3.0

Ka = 0.65

K
a

Figure 5.11: LMI calculated feasible region for second order actuator dynamics with Ka ∈ [0.65,3.0]. The
black dashed trace indicates Ka = 1.0.

of the hypercube for the LMI analysis. In this case, the architecture considered in [95, 103] which includes

an unknown control effectiveness could be used to determine the feasible region.

5.4.3.2 Computing Limits for Second Order Actuator Dynamics with One Zero

We now add a zero to the second order actuator model from Section 5.4.3.1 and assume unity static

gain

GA(s) =
ω2

n (λ1s+1)
s2 +2ζ ωns+ω2

n
, (5.146)

where −λ
−1
1 is the added zero. It follows that (5.146) can be written in controllable canonical form with

F =

 0 1

−ω2
n −2ζ ωn

 , G =

0

1

 , H =

[
ω2

n λ1ω2
n

]
. (5.147)

As in Section 5.4.3.1, for visual convenience, we plot the feasible region of (ζ ,ωn) for different fixed values

of the added zero. With this in mind, we again let b0 = ω2
n and b1 = 2ζ ωn and write the parameterized

matrices
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F =

 0 1

−bfeas
0 −bfeas

1


︸ ︷︷ ︸

F feas

+δb0

0 0

1 0


︸ ︷︷ ︸

F1

+δb1

0 0

0 1


︸ ︷︷ ︸

F2

, (5.148)

H =

[
bfeas

0 λ1bfeas
0

]
︸ ︷︷ ︸

Hfeas

+δb0

[
−1 −λ1

]
︸ ︷︷ ︸

H1

+δb1

[
0 0

]
︸ ︷︷ ︸

H2

. (5.149)

such that the corners of the hypercube can be constructed as in (5.145). Starting at the initial feasible values

bfeas
0 = 8100 and bfeas

1 = 270 (i.e., ωn = 90 and ζ = 1.5), Algorithm 1 Feasible Region Search is used to find

the feasible region of b0 and b1 for three different zero values (i.e., λ1 = 1.0,0.5,0.1). The corresponding

feasible regions of ωn and ζ values are shown in Figure 5.12, such that any actuator in an aircraft with

characteristics above these feasible regions is guaranteed to provide safe adaptation. It can be seen that as

the zero moves further left from the imaginary axis, the feasible region gets smaller. In addition, points are

included to show where instability is reached in simulation to estimate the conservatism of the computed

limit provide by the proposed approach.
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Figure 5.12: LMI calculated feasible region for second order actuator dynamics with additional zero.
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5.4.3.3 Computing Limits for Third Order Actuator Dynamics with One Zero and Three Poles

For this example, a pole is added to the actuator model from Section 5.4.3.2 such that the resulting

actuator model is third order. For this purpose, consider the actuator dynamics given in the frequency domain

as

GA(s) =
ω2

n (λ1s+1)
(λ2s+1)(s2 +2ζ ωns+ω2

n )
, (5.150)

where −λ
−1
2 is the added pole. In controllable canonical form, (5.150) can be written as in (5.116) and

(5.117) with

F =


0 1 0

0 0 1

−ω2
n

λ2
−ω2

n − 2ζ ωn
λ2

−2ζ ωn− 1
λ2

 , G =


0

0

1

 , H =

[
ω2

n
λ2

λ1ω2
n

λ2
0

]
. (5.151)

Again for convenience in displaying the results, we fix λ1 and λ2 to obtain the feasible region of ζ and

ωn values. For this purpose, we use each of the three zeros considered in the previous section, with three

different poles, and then the feasible region is computed. To use Algorithm 1 Feasible Region Search let

b0 = ω2
n and b1 = 2ζ ωn such that the parameterized actuator matrices F and H follow as

F =


0 1 0

0 0 1

− 1
λ2

bfeas
0 −(bfeas

0 + 1
λ2

bfeas
1 ) −(bfeas

1 + 1
λ2
)


︸ ︷︷ ︸

F feas

+δb0


0 0 0

0 0 0

1
λ2

1 0


︸ ︷︷ ︸

F1

+δb1


0 0 0

0 0 0

0 1
λ2

1


︸ ︷︷ ︸

F2

, (5.152)

H =

[
1
λ2

bfeas
0

λ1
λ2

bfeas
0 0

]
︸ ︷︷ ︸

Hfeas

+δb0

[
− 1

λ2
−λ1

λ2
0

]
︸ ︷︷ ︸

H1

+δb1

[
0 0 0

]
︸ ︷︷ ︸

H2

. (5.153)

such that the corners of the hypercube can be constructed as

Ai =

 A+BW T
i BHfeas

−G
(
K +W T

i N
)

F feas

+δb0

03×3 BH1

03×3 F1

δb1

03×3 BH2

03×3 F2

 . (5.154)
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Starting at the initial feasible values bfeas
0 = 8100 and bfeas

1 = 270 (i.e., ωn = 90 and ζ = 1.5), Algorithm 1

Feasible Region Search is used to find the feasible region of b0 and b1 and then mapped back to ωn and ζ as

shown in Figures 5.13–5.15. It can be seen that the location of the third pole, effects the allowable variation

in ωn and ζ . For instance, in Figure 5.13, when λ2 is large (i.e., the pole is closer to the imaginary axis),

larger ζ values require drastically large ωn values whereas when λ2 gets smaller (i.e., the pole moves further

away from the imaginary axis), smaller ωn values can be tolerated for the respective ζ values. Similar

arguments can be made from Figures 5.14 and 5.15. In addition, simulations were run to determine at what

values the system yields unbounded trajectories. These points are included to estimate the conservatism of

the proposed approach.
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Figure 5.13: LMI calculated feasible region for third order actuator dynamics with one zero (λ1 = 1.0) and
three poles.

In addition, Figures 5.16–5.20 are included to show the performance of the proposed approach.

Specifically, Figure 5.16 shows the feasible region computed by Algorithm 1 Feasible Region Search for

the case with the added zero at λ1 = 1.0 and the third pole at λ2 = 0.5 from Figure 5.13. Additional data

points with different ζ and ωn values have been included with the LMI computed limit, with the simulation

results provided in Figures 5.17 – 5.20. In particular, Figure 5.17 shows the reference model performance

for data points 1-5 which are all contained within or on the feasible limit. This shows approximately where

the performance of the reference model deteriorates when compared to a sufficiently “fast” actuator (i.e.,
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Figure 5.14: LMI calculated feasible region for third order actuator dynamics with one zero (λ1 = 0.5) and
three poles.
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Figure 5.15: LMI calculated feasible region for third order actuator dynamics with one zero (λ1 = 0.1) and
three poles.

data point 1 representing (ζ ,ωn) = (0.53,60)). As seen in the figure, the angle-of-attack trajectory does not

change considerably between the different (ζ ,ωn) values, whereas the pitch rate has different degrees of

oscillation in the transient portion. It was found that as the value of ζ increased, a larger value of ωn was
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required for more desirable reference model performance. Lastly, Figures 5.18–5.20 show the state tracking

and control performance for data points 1,2, and 6 from Figure 5.16. It can be seen from Figures 5.18

and 5.19 that the state tracking and control performance deteriorate slightly between the sufficiently “fast”

actuator given by (ζ ,ωn) = (0.53,60) and the dynamics at the feasible limit given by (ζ ,ωn) = (0.53,18.7).

This is to be expected since the reference model performance is effected as actuator becomes “slower”

as seen in Figure 5.17. The point of instability is then reached at (ζ ,ωn) = (0.53,16.7) as seen by the

unbounded trajectories in Figure 5.20.
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2. (ζ, ωn) = (0.53, 18.72)
3. (ζ, ωn) = (0.3, 30)
4. (ζ, ωn) = (0.7, 20)
5. (ζ, ωn) = (1.1, 30)
6. (ζ, ωn) = (0.53, 16.7)
Additional Unstable

Figure 5.16: LMI feasible region with additional simulation points for third order actuator model from
Figure 5.13 with λ1 = 1.0 and λ2 = 0.5.
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Figure 5.17: Reference model performance for data points 1-5 of Figure 5.16.

Figure 5.18: State tracking and controller performance for data point 1 (i.e., (ζ ,ωn) = (0.53,60)) of Figure
5.16.
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Figure 5.19: State tracking and controller performance for data point 2 (i.e., (ζ ,ωn)= (0.53,18.7)) of Figure
5.16.

Figure 5.20: State tracking and controller performance for data point 6 (i.e., (ζ ,ωn)= (0.53,16.7)) of Figure
5.16.
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5.4.4 Conclusion

In this paper, an LMI-based hedging approach for model reference adaptive control in the presence

of high-order actuator dynamics was applied to the short-period dynamics of a hypersonic vehicle model

subject to pole-zero actuator dynamics. It was shown that the proposed approach has the ability to provide

a feasible region of safe actuation limits for different high order actuator models with varying pole and zero

locations as well as different static gain values.
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CHAPTER 6: EXPANDED REFERENCE MODELS FOR UNCERTAIN DYNAMICAL SYSTEMS

WITH ACTUATOR DYNAMICS: STABILITY, PERFORMANCE, AND ROBUSTNESS

For uncertain dynamical systems with actuator dynamics, this paper presents a new adaptive control

architecture using expanded reference models. Specifically, the proposed adaptive control architecture

allows the trajectories of the uncertain dynamical system to follow the trajectories of the expanded reference

model that are shown to remain predictably close to the trajectories of the ideal reference model, which

captures a desired closed-loop system performance, as compared to a well-respected approach. In addition,

we utilize a command governor architecture with the proposed expanded reference model in order to achieve

asymptotic convergence of the expanded reference model trajectories to those of the ideal reference model

such that the desired closed-loop system performance can be captured. We then incorporate an estimation

of the actuator bandwidth for providing robustness of the proposed adaptive control architecture against

possible uncertainties in the actuator bandwidths. Finally, we analyze the stability of the proposed adaptive

control architecture and its generalizations using linear matrix inequalities and Lyapunov theory, and also

present a numerical hypersonic vehicle example for illustrating the efficacy of our contributions.

6.1 Introduction

6.1.1 Motivation and Background

The design of a model reference adaptive control algorithm has three major components — a

reference model, an update law, and a feedback control law [3, 4]. Specifically, a desired closed-loop system

performance is captured by the reference model. The system error between the state (respectively, output) of

this model and the state (respectively, output) of the uncertain dynamical system is used to drive the update

law online. This then allows the control law to adapt its feedback gains using the information received from

the update law for suppressing the system error. The promising feature of this control algorithm is its ability

to achieve desired levels of system performance without excessively relying on dynamical models of the
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system being controlled. Therefore, it can effectively guarantee certain levels of system performance in the

presence of system uncertainties (see, for example, [5–7, 93]).

While addressing system uncertainties, the presence of unmodeled dynamics are often neglected in

the design of model reference adaptive control algorithms (see, for example, [8–12] and references therein).

A practically unavoidable form of unmodeled dynamics is the actuator dynamics that is present in any

physical system. In particular, if the bandwidths of each actuator channel are not sufficiently fast, then the

closed-loop system trajectories may not behave close to the reference model trajectories and, importantly,

the stability of the closed-loop system can be lost. Furthermore, additional verification steps are necessary

to show the allowable bandwidth range of the actuator dynamics for safety-critical and human-in-the-loop

applications such that the adaptive control algorithms correctly suppress the system uncertainties [95].

The authors of [58] investigate how slow the actuator dynamics need to become before the closed-

loop stability is negatively effected for a scalar system. In addition, they then propose different modifications

to the control law to provide additional robustness when the actuator dynamics are not sufficiently fast. The

authors of [30–33] propose a well-respected practical approach in the aerospace engineering field known as

(pseudo-control) hedging. In particular, based on a given reference model capturing a desired closed-loop

dynamical system performance, the hedging approach alters the trajectories of this model enabling adaptive

control laws to be designed such that their stability is not affected by the presence of actuator dynamics.

Furthermore, the results documented in [95, 117, 118] present theoretical generalizations to this approach,

where linear matrix inequalities (LMIs) are used to show that correct adaptation in the presence of actuator

dynamics is only feasible under certain stability limits. Specifically, considering the actuator dynamics of

interest, when the solution to the resulting LMIs is feasible, then stability of the closed-loop dynamical

system is guaranteed. While the hedging approach is a well-adopted technique with applications to aircraft

[30–34, 121], spacecraft [122], helicopters [123], and missiles [124]), the stability guarantees as shown in

[95, 117, 118] are limited to achieving bounded controlled system trajectories around a neighborhood of the

given ideal reference model that captures a desired closed-loop system performance.

6.1.2 Contribution and Notation

The contributions of this paper can be stated as follows. First, we present a new adaptive control

architecture using expanded reference models for uncertain dynamical systems with actuator dynamics.

The proposed adaptive control architecture allows the trajectories of the uncertain dynamical system to
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follow the trajectories of the expanded reference model, which are shown to remain predictably close

to the trajectories of the ideal reference model as compared with the hedging approach. Second, we

utilize a new command governor architecture developed for the proposed expanded reference model for

the purpose of achieving asymptotic convergence of the expanded reference model trajectories to those of

the ideal reference model such that the desired closed-loop system performance can be captured. Third, we

incorporate an estimation of the actuator bandwidth for providing robustness against possible uncertainties

in the bandwidths of actuator channels. Finally, we analyze the stability of the proposed adaptive control

architecture and its generalizations using linear matrix inequalities and Lyapunov theory, and also present a

numerical hypersonic vehicle example for illustrating the efficacy of our contributions.

It should also be noted that two preliminary conference versions of this paper appeared in [125,

126]. The present paper significantly goes beyond these preliminary conference papers in the sense that

i) neither [125] nor [126] consider uncertainty in the control effectiveness and the present work does, ii) a

command governor architecture is implemented in the present paper such that asymptotic convergence to

the ideal reference model is guaranteed and neither [125] nor [126] can achieve this, and iii) this present

work considers uncertainty in the actuator bandwidth for a multi-input case whereas [126] only considered a

single control channel. In addition, this paper provides additional motivation and discussion on the proposed

expanded reference model design including comparisons to the hedging approach as well as detailed proofs.

Throughout this paper, we use R for the set of real numbers, Rn for the set of n× 1 real column

vectors, Rn×m for the set of n×m real matrices, R+ (respectively, R+) for the set of positive (respectively,

nonnegative) real numbers, Rn×n
+ (respectively, Rn×n

+ ) for the set of n× n positive-definite (respectively,

nonnegative-definite) real matrices, Dn×n for the set of n×n real matrices with diagonal scalar entries, 0n×m

for the m×m matrix of all zeros, In for the n×n identity matrix, and “,” for the equality by definition. We

also write (·)T for the transpose operator, (·)−1 for the inverse operator, tr(·) for the trace operator, L{·} for

the Laplace transform operator, and ei for the standard basis for i = 1, ...,n.

6.2 Problem Formulation

In this section, we introduce the problem considered throughout this paper. For this purpose,

consider the uncertain dynamical system given by

ẋ(t) = Ax(t)+B
(
Λv(t)+W Tx(t)

)
, x(0) = x0, (6.1)
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where x(t) ∈ Rn is an available (i.e., measurable) state vector and v(t) ∈ Rm is the actuator output of the

actuator dynamics satisfying

v̇(t) = −M
(
v(t)−u(t)

)
, v(0) = v0, (6.2)

with u(t) ∈ Rm being the control signal (i.e., the input of the actuator dynamics) and M ∈ Rm×m∩Dm×m is

constructed of diagonal entries mi,i > 0, i = 1, . . . ,m that represent the actuator bandwidth of each control

channel. In addition, A ∈ Rn×n is a known system matrix, B ∈ Rn×m is a known control input matrix,

W ∈Rn×m is an unknown weight matrix, and Λ ∈Rm×m
+ ∩Dm×m is an unknown control effectiveness matrix

that can be parameterized as

Λ = Im +δΛ, (6.3)

where δΛ ∈ Rm×m∩Dm×m is unknown1. Throughout this paper, we make the standard assumption that the

pair (A,B) is controllable.

Next, consider the reference model capturing a desired (i.e., ideal) closed-loop dynamical system

performance given by

ẋr(t) = Arxr(t)+Brc(t), xr(0) = xr0, (6.4)

where xr(t)∈Rn is the reference state vector, Ar ∈Rn×n is the Hurwitz reference model matrix, Br ∈Rn×m is

the command input matrix, and c(t)∈Rm is the desired uniformly continuous smooth and bounded reference

command. In the classical sense, the objective of the model reference adaptive control problem is to design

an adaptive feedback control law such that the state vector x(t) at least closely follows the reference state

vector xr(t) in the presence of system uncertainties captured by the unknown matrices “W” and “δΛ” that

appear in (6.1) and (6.3).

6.2.1 Actuators with Sufficiently Fast Dynamics

If the actuator dynamics given by (6.2) are sufficiently fast, then it is common practice to neglect

their presence. In this case, (6.1) becomes

1The parameterized form of the unknown control effectiveness given by (6.3) is fairly adopted in literature (see, for example,
[95, 127–129])
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ẋ(t) = Ax(t)+B
(
(Im +δΛ)u(t)+W Tx(t)

)
, x(0) = x0. (6.5)

In this approximate form, the control channel has direct access to the system uncertainties; hence, a standard

model reference adaptive control architecture can be easily implemented to suppress the system uncertain-

ties. To elucidate this well-known point and be self-contained, let the feedback control law be given as in

[95] by2

u(t) = −(Im +δ Λ̂(t))−1(Ŵ T(t)x(t)+K1x(t)−K2c(t)
)
, (6.6)

where K1 ∈ Rm×n and K2 ∈ Rm×m are the nominal feedback and feedforward gain matrices designed such

that Ar , A− BK1 and Br , BK2 hold. Furthermore, Ŵ (t) ∈ Rn×m and δ Λ̂(t) ∈ Rm×m are the (online)

estimates of W and δΛ respectively satisfying the weight update laws

˙̂W (t) = γProjm
[
Ŵ (t), x(t)eT(t)PB

]
, Ŵ (0) = Ŵ0, (6.7)

δ
˙̂
Λ(t) = αProjm

[
δ Λ̂(t), BTPe(t)uT(t)

]
, δ Λ̂(0) = δ Λ̂0, (6.8)

where γ ∈ R+ and α ∈ R+ are learning rate gains, P ∈ Rn×n
+ is a solution of the Lyapunov equation 0 =

AT
r P+PAr +R, R ∈ Rn×n

+ , and e(t) , x(t)− xr(t) is the system error state vector3. Using (6.4), (6.5), and

(6.6), the system error dynamics can then be written as

ė(t) = Are(t)−B
(
W̃ T(t)x(t)+δ Λ̃(t)u(t)

)
, e(0) = e0, (6.9)

where W̃ (t), Ŵ (t)−W ∈ Rn×m and δ Λ̃(t), δ Λ̂(t)−δΛ ∈ Rm×m.

From (6.9), the weight update laws (6.7) and (6.8) can be easily derived using the Lyapunov

function V(e,W̃ ,δ Λ̃) = eTPe+ γ−1tr W̃ TW̃ +α−1tr δ Λ̃Tδ Λ̃ [5–7]. Specifically, from the time derivative

of this Lyapunov function, i.e., V̇(e(t), W̃ (t)) ≤ −eT(t)Re(t) ≤ 0, one can conclude the boundedness of

the solution (e(t),W̃ (t), δ Λ̃(t)) as well as limt→∞ V̇
(
e(t),W̃ (t),δ Λ̃(t)

)
= 0, where the latter results from

Barbalat’s lemma [88]. This consequently shows that e(t)→ 0 as t → ∞, thereby achieving the classical

objective of the model reference adaptive control problem.

2To ensure (6.6) is implementable, the projection bounds for the estimate of δ Λ̂(t) in (6.8) can be defined such that Im +δ Λ̂(t)
is invertible (see, for example, [95, 127, 130, 131]).

3Details on the projection operator are given in Appendix A
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6.2.2 Actuators without Sufficiently Fast Dynamics

For many real-world engineering applications, especially for safety-critical applications, when the

actuator dynamics given by (6.2) are not sufficiently fast, one must consider (6.1) and (6.2) together in order

to correctly represent the uncertain dynamical system to be controlled. This in turn implies the control

channel cannot directly access the system uncertainties for the purpose of suppressing their presence; hence,

the closed-loop stability characteristics of the model reference adaptive control architecture overviewed

in Section 6.2.1 no longer hold. To address this challenge, a well-respected approach in the aerospace

engineering field is the (pseudo-control) hedging method [30–33] (also see [95, 117, 118] and references

therein). In particular, this method alters the “ideal” reference model trajectory given by (6.4) with a hedging

term to allow for “correct” adaptation in the presence of actuator dynamics. In this case, the (altered)

reference model is given by

ẋr(t) = Arxr(t)+Brc(t)︸ ︷︷ ︸
Ideal Reference Model

+B(v(t)−u(t))︸ ︷︷ ︸
Hedging Term

, xr(0) = xr0. (6.10)

Now, as in [95], let the feedback control law be given by

u(t) = −K1x(t)+K2c(t)−Ŵ T(t)x(t)−δ Λ̂(t)v(t), (6.11)

where K1 ∈Rn×m and K2 ∈Rm×m are defined the same as in Section 6.2.1, Ŵ (t) ∈Rn×m satisfies the weight

update law given by (6.7), and δ Λ̂(t) ∈ Rm×m satisfies the weight update law given by

δ
˙̂
Λ(t) = αProjm

[
δ Λ̂(t), BTPe(t)vT(t)

]
, δ Λ̂(0) = δ Λ̂0. (6.12)

It follows from adding and subtracting “Bu(t)” in (6.1) and using (6.11), the uncertain dynamical system

can be written as

ẋ(t) = Arx(t)+Brc(t)−B
(
W̃ T(t)x(t)+δ Λ̃(t)v(t)

)
+B
(
v(t)−u(t)

)
. (6.13)

The error dynamics then follow from (6.10) and (6.13) as

ė(t) = Are(t)−B
(
W̃ T(t)x(t)+δ Λ̃(t)v(t)

)
, e(0) = e0. (6.14)
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By considering the Lyapunov candidate function in Section 6.2.1 and using (6.7), (6.12), and (6.14)

one can show the Lyapunov stability; hence, boundedness of the solution
(
e(t),W̃ (t),δ Λ̃(t)

)
. To conclude

e(t)→ 0 as t→∞, the boundedness of the modified reference model given by (6.10) is necessary. As shown

in [95], one can augment the reference model dynamics given by (6.10) and the actuator dynamics given by

(6.2) as

ẋr(t)

v̇(t)

 =

 A+BŴ T(t) B
(
Im +δ Λ̂(t)

)
−M

(
K1 +Ŵ T(t)

)
−M

(
Im +δ Λ̂(t)

)


︸ ︷︷ ︸
A
(

Ŵ (t),δ Λ̂(t)
)

xr(t)

v(t)

+
 B

(
K +Ŵ T(t)

)
e(t)

M
(
K2c(t)− (K +Ŵ T(t))e(t)

)


︸ ︷︷ ︸
ω(·)

.(6.15)

Since ω(·) is a bounded perturbation, one can conclude that xr(t) and v(t) are bounded provided that

A
(
Ŵ (t),δ Λ̂(t)

)
is quadratically stable (i.e.,AT

(
Ŵ (t),δ Λ̂(t)

)
P+PA

(
Ŵ (t),δ Λ̂(t)

)
< 0,P =PT > 0). This

condition can be satisfied using LMIs (we refer to [95] for details). Now one can conclude that e(t)→ 0

as t→ ∞ by application of Barbalat’s lemma [88] once again achieving the classical objective of the model

reference adaptive control problem, but now for the presence of actuator dynamics through the alteration of

the ideal reference model dynamics with the hedging term.

6.2.3 Objectives of the Paper

Now, as overviewed in Section 6.2.2, the hedging approach [30–33, 95, 117, 118] is a way to address

the challenge resulting from the presence of actuator dynamics in uncertain dynamical systems. However,

by altering the trajectory of the ideal reference model with the hedging term, one introduces additional

transient terms to the reference model. One important transient term introduced is the system error signal

e(t) that appears inside the term ω(·) of (6.15) (see also Remark 6.3.2). This particular transient term is

important, because while it is guaranteed that the system error asymptotically vanishes, it is not known,

without conservatism, how the transients of e(t) behave such that the trajectory of the the hedged reference

model can deviate from the ideal reference model trajectory in an unpredictable fashion.

The objectives of this paper can now be stated as follows: Consider the uncertain dynamical system

given by (6.1) with the actuator dynamics given by (6.2). Design an adaptive control architecture such that:
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i) The trajectories of the uncertain dynamical system follow the trajectories of a desired expanded

reference model, where this model does not include the effect from the system error e(t) (Section

6.3);

ii) Convergence to the ideal reference model given by (6.4) can be guaranteed (Section 6.4);

iii) Robustness to uncertainty in the actuator bandwidths M is obtained (Section 6.5).

6.3 Expanded Reference Models for Uncertain Dynamical Systems with Actuator Dynamics

We now introduce the proposed adaptive control architecture that allows for trajectories of the

uncertain dynamical system given by (6.1) to follow the trajectories of a desired reference model not

including the transients of the system error e(t). For this purpose, we consider an actuator model4 and

design an expanded reference model as

ẋr(t)

v̇r(t)


︸ ︷︷ ︸

żr(t)

=

 A+BŴ T(t) B
(
Im +δ Λ̂(t)

)
−M

(
K1 +Ŵ T(t)

)
−M

(
Im +δ Λ̂(t)

)


︸ ︷︷ ︸
Fr

(
Ŵ (t),δ Λ̂(t)

)

xr(t)

vr(t)


︸ ︷︷ ︸

zr(t)

+

0n×m

MK2


︸ ︷︷ ︸

Gr

c(t) (6.16)

where K1 ∈ Rm×n and K2 ∈ Rm×m are the nominal gains designed such that Ar = A− BK1 is Hurwitz,

Br = BK2 with K2 being nonsingular, and −EA−1
r Br = I with E ∈ Rm×n being a matrix that allows a user to

select a subset x(t) to follow c(t). In addition, Ŵ (t) ∈Rn×m and δ Λ̂(t) ∈Rm×m∩Dm×m are the estimates of

W and δΛ respectively for which the weight update laws are introduced later5,6.

4The assumed knowledge of the actuator bandwidth of the actuator model is relaxed in Section 6.5. Because, in real-world
applications, this bandwidth may not be precisely known but it is usually known with some error tolerance.

5While the reference model design in [132] is similar in spirit to the proposed expanded reference model, one significant
difference however is that the reference model matrix in [132] is designed using a matching condition assumption, where some
of the matrices used to construct the reference model matrix also include the system uncertainties such that it may not always be
possible to obtain an appropriate reference model matrix without explicit information of the system. In contrast, the expanded
reference model proposed in this paper, is shown to be purely constructed of known matrices and known signals. In addition, the
weight update law in [132] includes the actuator bandwidth m (scalar case) in the input matrix, whereas the proposed weight update
laws in this paper do not. This is important, because if the actuator bandwidth is sufficiently large, the weight update law in [132]
will produce a high gain adaptation effect (high-frequency oscillations in the control signal) which can cause instability through
excited unmodeled dynamics or violated rate saturation limits.

6Stability of the proposed expanded reference model is addressed in Theorem 6.3.1.
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Remark 6.3.1 The hedged reference model dynamics in (6.15) can be equivalently written as

ẋr(t)

v̇(t)

 =

 A+BŴ T(t) B
(
Im +δ Λ̂(t)

)
−M

(
K1 +Ŵ T(t)

)
−M

(
Im +δ Λ̂(t)

)


︸ ︷︷ ︸
A
(

Ŵ (t),δ Λ̂(t)
)

xr(t)

v(t)

+
0n×m

MK2


︸ ︷︷ ︸

Br

c(t)+

B
(
K1 +Ŵ T(t)

)
e(t)

−
(
K1 +Ŵ T(t)

)
e(t)


︸ ︷︷ ︸

φ(e(t))

.

(6.17)

Since the proposed expanded reference model given by (6.16) does not contain the additional φ(e(t)) term

as in (6.17), it is not be effected by the unpredictable transients of the system error. Thus, the proposed

architecture does not significantly alter the trajectories from the ideal reference model as compared with the

hedging approach. In fact, the structure of the expanded reference model given by (6.16) is intuitive (see the

next remark).

Remark 6.3.2 The proposed expanded reference model given by (6.16) approximates the ideal reference

model dynamics given by (6.4) as the actuator bandwidths become large. To elucidate this in a simple

setting, without loss of generality, consider the scalar control input case as

ẋr(t) =
(
A+BŴ T(t)

)
xr(t)+B

(
1+δ λ̂ (t)

)
vr(t), (6.18)

v̇r(t) = −m
(
K1 +Ŵ T(t)

)
xr(t)−m

(
1+δ λ̂ (t)

)
vr(t)+mK2c(t). (6.19)

In the Laplace domain with zero initial conditions, (6.19) can be written as

Vr(s) =
Φ(s)

m−1s+1
, (6.20)

where Φ(s) = L
{
−
(
K1 +Ŵ T(t)

)
xr(t)−δ λ̂ (t)vr(t)+K2c(t)

}
. In addition, one can equivalently write

(6.18) as

ẋr(t) =
(
A−BK1

)
xr(t)+BK2c(t)+B

(
vr(t)+

(
K1 +Ŵ T(t)

)
xr(t)+δ λ̂ (t)vr(t)−K2c(t)

)
= Arxr(t)+Brc(t)+B

(
vr(t)−φ(t)

)
, (6.21)

or in the Laplace domain with zero initial conditions as

sXr(s) = ArXr(s)+BrC(s)+B
(
Vr(s)−Φ(s)

)
. (6.22)
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Now, using (6.20) in (6.22) it follows that

sXr(s) = ArXr(s)+BrC(s)+B

[
1

m−1s+1
−1

]
Φ(s), (6.23)

such that one can make the intuitive argument as m, the actuator bandwidth, becomes large, the reference

model dynamics given by (6.18) and (6.19) closely approximates the ideal reference model dynamics given

by (6.4) (i.e. ẋr(t) = Arxr(t)+Brc(t)) owing to the fact that the term in brackets of (6.23) becomes small as

m becomes large. This presents the intuition behind the structure of the expanded reference model given by

(6.16).

Next, to achieve tracking of the expanded reference model (6.16), let the feedback control law be

given by

u(t) = −K1x(t)+K2c(t)−Ŵ T(t)x(t)−δ Λ̂(t)v(t), (6.24)

where Ŵ (t) satisfies the weight update law

˙̂W (t) = γProjm
[
Ŵ (t), x(t)z̃T(t)PB∗

]
, Ŵ (0) = Ŵ0, (6.25)

with γ ∈ R+ being the learning rate, z̃(t) = [eT(t), ṽT(t)]T ∈ Rn+m being the augmented error of the system

error state vector e(t) ∈Rn and the actuator output error ṽ(t), v(t)−vr(t) ∈Rm, P ∈R(n+m)×(n+m)
+ being a

solution of a matrix inequality for which further details are given below, and B∗ = [BT,0m×m]
T ∈ R(n+m)×m.

In addition, the projection bounds are defined such that ŵmin,i+( j−1)n ≤ [Ŵ (t)]i j ≤ ŵmax,i+( j−1)n, for i =

1, ...,n and j = 1, ...,m. Moreover, δ Λ̂(t) is constructed from the elemental weight update laws

δ
˙̂
λi(t) = αiProj

[
δ λ̂i(t), vi(t)z̃T(t)PB∗ei

]
, δ λ̂i(0) = δ λ̂i0, i = 1, ...,m, (6.26)

where αi ∈ R+ are the learning rates for each respective element, vi(t) is the ith element of the actuator

output vector, and ei is the standard basis for i = 1, ...,m. Note here that by elementally updating we can set

δ Λ̂(t), diag([δ λ̂1(t),δ λ̂2(t), ...,δ λ̂m(t)]) to estimate the uncertain diagonal elements of δΛ. The elemental

projection bounds are defined such that δ λ̂i,min ≤ δ λ̂i(t) ≤ δ λ̂i,max, for i = 1, ...,m. The definition of the

projection operator [6] used in the weight update laws is given the Appendix A.
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Now, using (6.24) in (6.2) and adding and subtracting BŴ T(t)x(t) and Bδ Λ̂(t)v(t) to (6.1) we can

write the uncertain dynamical system and the actuator dynamics as

ẋ(t) =
(
A+BŴ T(t)

)
x(t)+B

(
Im +δ Λ̂(t)

)
v(t)+B

(
W̃ T(t)x(t)+δ Λ̃(t)v(t)

)
, (6.27)

v̇(t) = −M
(
K1 +Ŵ T(t)

)
x(t)−M

(
Im +δ Λ̂(t)

)
v(t)+MK2c(t), (6.28)

which can be written in compact form as

ż(t) = Fr
(
Ŵ (t),δ Λ̂(t)

)
z(t)+Grc(t)−B∗

(
W̃ T(t)x(t)+δ Λ̃(t)v(t)

)
. (6.29)

where z(t), [xT(t),vT(t)]T, W̃ (t) = Ŵ (t)−W ∈Rn×m, and δ Λ̃(t) = δ Λ̂(t)−δΛ∈Rm×m∩Dm×m. Defining

the augmented error z̃(t), z(t)− zr(t), the following error dynamics can be written from (6.29) and (6.16)

as

˙̃z(t) = Fr
(
Ŵ (t),δ Λ̂(t)

)
z̃(t)−B∗

(
W̃ T(t)x(t)+δ Λ̃(t)v(t)

)
, z̃(0) = z̃0, (6.30)

which, owing to the diagonal structure of δ Λ̃(t), can be equivalently rewritten as

˙̃z(t) = Fr
(
Ŵ (t),δ Λ̂(t)

)
z̃(t)−B∗

(
W̃ T(t)x(t)+

m

∑
i=1

eiδ λ̃i(t)vi(t)
)
, z̃(0) = z̃0. (6.31)

The following assumption, which captures the fundamental interplay between the allowable system uncer-

tainties and actuator dynamics, is necessary for the feasibility of the model reference adaptive control in the

presence of actuator dynamics (also see (6.39) in the proof of Theorem 6.3.1 later).

Assumption 6.3.1 The matrix given by

A
(
Ŵ (t),δ Λ̂(t),ε

)
=

A+BŴ T(t)+ ε

2 In B
(
Im +δ Λ̂(t)

)
−M

(
K1 +Ŵ T(t)

)
−M

(
Im +δ Λ̂(t)

)
+ ε

2 Im

 , (6.32)

with ε ∈ R+ being a design parameter, is quadratically stable.

Remark 6.3.3 By definition, (6.32) is quadratically stable if and only if there exists a P > 0 such that

AT
(
Ŵ (t),δ Λ̂(t),ε

)
P +PA

(
Ŵ (t),δ Λ̂(t),ε

)
< 0 holds [97, 98]. Using LMIs, we can satisfy the quadratic
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stability of (6.32) for given projection bounds Ŵmax and δ λ̂max for the elements of Ŵ (t) and δ Λ̂(t) re-

spectively, the bandwidths of the actuator dynamics M, and the design parameter ε . For this purpose, let

W i1,...,i f ∈ Rn×m be defined as

W i1,...,i f =



i1ŵmax,1 +(1− i1)ŵmin,1 i1+nŵmax,1+n +(1− i1+n)ŵmin,1+n

i2ŵmax,2 +(1− i2)ŵmin,2 i2+nŵmax,2+n +(1− i2+n)ŵmin,2+n

...
...

inŵmax,n +(1− in)ŵmin,n i2nŵmax,2n +(1− i2n)ŵmin,2n

. . . i1+(m−1)nŵmax,1+(m−1)n +(1− i1+(m−1)n)ŵmin,1+(m−1)n

. . . i2+(m−1)nŵmax,2+(m−1)n +(1− i2+(m−1)n)ŵmin,2+(m−1)n

. . .
...

. . . imnŵmax,mn +(1− imn)ŵmin,mn


, (6.33)

where i f ∈ {0,1}, f ∈ {1, ...,2mn}, such that W i1,...,i f represents the corners of the hypercube defining the

variation of Ŵ (t), and

δΛi1,...,ig = diag
([

i1δ λ̂max,1 +(1− i1)δ λ̂min,1, ..., imδ λ̂max,m +(1− im)δ λ̂min,m
])

, (6.34)

where ig ∈ {0,1}, g ∈ {1, ...,2m}, such that δΛi1,...,ig represents the corners of the hypercube defining the

variation of δ Λ̂(t). Now, let

Ai1,...,ih =

A+BW T
i1,...,i f

+ ε

2 In B
(
Im +δΛi1,...,ig

)
−M

(
K1 +W T

i1,...,i f

)
−M

(
Im +δΛi1,...,ig

)
+ ε

2 Im

 , (6.35)

where h∈ {1, ...,2m +2mn} be the corners of the hypercube constructed from all the permutations of W i1,...,i f

and δΛi1,...,ig . For a given M, it can then be shown that

AT
i1,...,ihP+PAi1,...,ih < 0, P > 0, (6.36)
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implies thatAT
(
Ŵ (t),δ Λ̂(t),ε

)
P+PA

(
Ŵ (t),δ Λ̂(t),ε

)
< 0 [96, 99]; thus, one can solve the LMI given by

(6.36) to calculate P , which is then used in the weight update laws (6.25) and (6.26).

Now that Assumption 6.3.1 can be satisfied through the use of LMIs as shown in Remark 6.3.3, we

are ready to state the following theorem.

Theorem 6.3.1 Consider the uncertain dynamical system given by (6.1), the actuator dynamics given by

(6.2), the expanded reference model given by (6.16), the feedback control law given by (6.24), and the

update laws given by (6.25) and (6.26). Under Assumption 6.3.1, the solution
(
z̃(t),W̃ (t), δ Λ̃(t)

)
of the

closed-loop dynamical system is bounded, limt→∞e(t) = 0, and limt→∞ṽ(t) = 0.

Proof. To show the Lyapunov stability; hence, the boundedness of the solution
(
z̃(t),W̃ (t), δ Λ̃(t)

)
,

consider the Lyapunov function candidate given by

V
(
z̃,W̃ ,δ Λ̃

)
= z̃TP z̃+ γ

−1tr W̃ TW̃ +
m

∑
i=1

α
−1
i δ λ̃

2
i . (6.37)

Note that V(0,0,0) = 0 and V(z̃,W̃ ,δ Λ̃) > 0 for all (z̃,W̃ ,δ Λ̃) 6= (0,0,0). Differentiating (6.37) along the

closed-loop system trajectories and using (6.25) and (6.26) yields

V̇
(
z̃(t),W̃ (t),δ Λ̃(t)

)
= 2z̃T(t)P

(
Fr
(
Ŵ (t),δ Λ̂(t)

)
z̃(t)−B∗W̃ T(t)x(t)−B∗

m

∑
i=1

eiδ λ̃i(t)vi(t)
)

+2γ
−1tr W̃ T(t) ˙̂W (t)+2

m

∑
i=1

α
−1
i δ λ̃i(t)δ

˙̂
λi(t)

= z̃T(t)
(

FT
r
(
Ŵ (t),δ Λ̂(t)

)
P+PFr

(
Ŵ (t),δ Λ̂(t)

))
z̃(t)

−2z̃T(t)PB∗W̃ T(t)x(t)+2γ
−1tr W̃ T(t) ˙̂W (t)

−2z̃T(t)PB∗
(
e1δ λ̃1(t)v1(t)+ e2δ λ̃2(t)v2(t)+ · · ·+ emδ λ̃m(t)vm(t)

)
+2
(
α
−1
1 δ λ̃1(t)δ

˙̂
λ1(t)+α

−1
2 δ λ̃2(t)δ

˙̂
λ2(t)+ · · ·+α

−1
m δ λ̃m(t)δ

˙̂
λm(t)

)
= z̃T(t)

(
FT

r
(
Ŵ (t),δ Λ̂(t)

)
P+PFr

(
Ŵ (t),δ Λ̂(t)

))
z̃(t)

+2γ
−1tr W̃ T(t)

(
˙̂W (t)− γx(t)z̃T(t)PB∗

)
+2

m

∑
i=1

α
−1
i δ λ̃i(t)

(
δ

˙̂
λi(t)−αivi(t)z̃T(t)PB∗ei

)
≤ z̃T(t)

(
FT

r
(
Ŵ (t),δ Λ̂(t)

)
P+PFr

(
Ŵ (t),δ Λ̂(t)

))
z̃(t). (6.38)

By adding and subtracting ε

2 I, it follows that (6.38) can be equivalently written as
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V̇
(
z̃(t),W̃ (t),δ Λ̃(t)

)
≤ z̃T(t)

((
Fr
(
Ŵ (t),δ Λ̂(t)

)
+

ε

2
In+m

)T
P+P

(
Fr
(
Ŵ (t),δ Λ̂(t)

)
+

ε

2
In+m

))
z̃(t)− ε z̃T(t)P z̃(t)

= z̃T(t)
(
AT(Ŵ (t),δ Λ̂(t),ε

)
P+PA

(
Ŵ (t),δ Λ̂(t),ε

))
z̃(t)− ε z̃T(t)P z̃(t). (6.39)

Since A
(
Ŵ (t),δ Λ̂(t),ε

)
is quadratically stable by Assumption 6.3.1 (satisfied using LMIs, see Remark

6.3.3), it follows further from (6.39) that V̇
(
z̃(t),W̃ (t),δ Λ̃(t)

)
≤ −ε z̃T(t)P z̃(t) ≤ 0, which guarantees the

boundedness of the solution
(
z̃(t),W̃ (t),δ Λ̃(t)

)
.

To conclude limt→∞e(t) = 0 and limt→∞ṽ(t) = 0 it is necessary to show that xr(t) is bounded.

From Assumption 6.3.1, it follows that AT
(
Ŵ (t),δ Λ̂(t),ε

)
P +PA

(
Ŵ (t),δ Λ̂(t),ε

)
< 0, which can be

equivalently written as FT
r
(
Ŵ (t),δ Λ̂(t)

)
P+PFr

(
Ŵ (t),δ Λ̂(t)

)
<−εP < 0, and hence, Fr

(
Ŵ (t), δ Λ̂(t)

)
is

quadratically stable. Since Fr
(
Ŵ (t),δ Λ̂(t)

)
is quadratically stable and Grc(t) is bounded, it follows that xr(t)

and vr(t) are bounded. It follows that V̈
(
z̃(t),Ŵ (t),δ Λ̂(t)

)
is bounded7 such that from Barbalat’s lemma [88]

it can be concluded that limt→∞ V̇
(
z̃(t),Ŵ (t),δ Λ̂(t)

)
= 0; hence, limt→∞e(t) = 0 and limt→∞ṽ(t) = 0. �

As discussed in Remark 6.3.1, the proposed adaptive control architecture can improve the per-

formance as compared to the hedging approach by removing the transients of the system error e(t) from

the proposed expanded reference model. In addition, as shown in Theorem 6.3.1, the trajectories of the

uncertain dynamical system follow the trajectories of the desired reference model. Yet, like the hedging

approach but without depending on the system error, the proposed expanded reference model still alters the

ideal reference model given by (6.4) (especially when the actuator bandwidths are small, see Remark 6.3.2),

such that the trajectories can still be modified from the trajectories which capture the desired closed-loop

dynamical system performance. In the next section, we show that the proposed expanded reference model

can be guaranteed to converge to the ideal reference model given by (6.4) such that the desired closed-loop

dynamical system performance can be captured by the uncertain dynamical system.

6.4 A Command Governor Architecture for Performance Guarantees

In this section, we provide guarantees on the performance of the proposed adaptive control ar-

chitecture. This is done by implementing a command governor architecture in the expanded reference

model presented in the previous section such that its trajectories converge, in a predictable fashion, to the

7Additional details and discussion on the boundedness of V̈(·) are given in Remark 6.4.1.
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trajectories of the ideal reference model8. Now, we augment the expanded reference model given by (6.16)

with a command governor architecture as

żr(t) = Fr
(
Ŵ (t),δ Λ̂(t)

)
zr(t)+Grcg(t) (6.40)

cg(t) = c(t)+Dξ (t), (6.41)

where c(t) ∈ Rm is the uniformly continuous smooth and bounded reference command used in (6.4) and

(6.16) (since c(t) is a user-defined smooth function, we implicitly assume that ċ(t) is bounded as well as

available) and Dξ (t) ∈ Rm is a command governor signal with D, K−1
2 M−1 ∈ Rm×m and ξ (t) ∈ Rm being

the command governor output given by

ξ (t) =
(
Im +δ Λ̂(t)

)−1(−µρ(t)−φ1(t)
)
−φ2(t), (6.42)

where µ ∈ R+ is the command governor gain, ρ ∈ Rm is the command governor state vector

ρ(t) ,
(
K1 +Ŵ T(t)

)
xr(t)+

(
Im +δ Λ̂(t)

)
vr(t)−K2c(t). (6.43)

In addition, a backstepping-like approach is used to design the command governor signals9

φ1(t) ,
(
K1 +Ŵ T(t)

)((
A+BŴ T(t)

)
xr(t)+B

(
Im +δ Λ̂(t)

)
vr(t)

)
−K2ċ(t)

+δ
˙̂
Λ(t)vr(t)+ ˙̂W T(t)xr(t)

=
(
K1 +Ŵ T(t)

)((
A+BŴ T(t)

)
xr(t)+B

(
Im +δ Λ̂(t)

)
vr(t)

)
−K2ċ(t)

+diag
([

αiProj
[
δ λ̂i(t), vi(t)z̃T(t)PB∗ei

]])
vr(t)

+γ

(
Projm

[
Ŵ (t), x(t)z̃T(t)PB∗

])T
xr(t), i = 1, ...,m, (6.44)

φ2(t) , −M
(
K1 +Ŵ T(t)

)
xr(t)−M

(
Im +δ Λ̂(t)

)
vr(t)+MK2c(t). (6.45)

8A command governor architecture is also used by the authors in [81] to improve transient performance and [19] for dynamical
systems with unmatched uncertainties. The implementation of the proposed command governor architecture in this paper is however
different from these in that we use it with the reference model to improve its performance in the presence of actuator dynamics. We
also refer to the survey paper [133] for more applications of command governors (also referred to as reference shaping techniques)
for both adaptive and non-adaptive control architectures.

9We refer to the proof of Theorem 6.4.1 and particularly (6.55)–(6.57) for how (6.44) and (6.45) are designed.
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It should be noted that K1 ∈ Rm×n and K2 ∈ Rm×m are the same nominal control gains given in Section 6.3,

Ŵ ∈ Rn×m satisfies the weight update law given by (6.25), and δ Λ̂(t) , diag([δ λ̂1(t), δ λ̂2(t), ...,δ λ̂m(t)])

satisfies the elemental update laws given by (6.26). The only additional modification is to the feedback

control law now given by

u(t) = −K1x(t)+K2cg(t)−Ŵ T(t)x(t)−δ Λ̂(t)v(t), (6.46)

to achieve tracking of the command governor based expanded reference model given by (6.40).

As in Section 6.3, by adding and subtracting BŴ T(t)x(t) and Bδ Λ̂(t)v(t) to (6.1) and now using

(6.46) in (6.2), we can write the augmented uncertain dynamical system and actuator dynamics in compact

form as

ż(t) = Fr
(
Ŵ (t),δ Λ̂(t)

)
z(t)+Grcg(t)−B∗

(
W̃ T(t)x(t)+δ Λ̃(t)v(t)

)
. (6.47)

It then follows from (6.40) and (6.47) that the system error dynamics can be given identically as (6.30)

(equivalently written as (6.31)).

Lemma 6.4.1 Consider the uncertain dynamical system given by (6.1), the actuator dynamics given by

(6.2), the expanded reference model given by (6.40), the feedback control law given by (6.46), and the

update laws given by (6.25) and (6.26). Under Assumption 6.3.1, the solution
(
z̃(t),W̃ (t), δ Λ̃(t)

)
of the

closed-loop dynamical system is bounded.

Proof. Owing to the modification to the feedback control law given by (6.46) resulting in the same

system error dynamics as in Section 6.3, the proof follows as the first part of the proof for Theorem 6.3.1. As

a brief review of this, consider the Lyapunov function candidate given by (6.37). Differentiation of (6.37)

and application of (6.25) and (6.26) results in V̇
(
z̃(t),W̃ (t),δ Λ̃(t)

)
≤ −ε z̃T(t)P z̃(t) ≤ 0, which guarantees

the Lyapunov stability, and hence, the boundedness of the solution
(
z̃(t),W̃ (t),δ Λ̃(t)

)
. �

Remark 6.4.1 As in the proof of Theorem 6.3.1, it is necessary to show the proposed expanded reference

model given by (6.40) is bounded. This is because in order to use Barbalat’s lemma [88] to show that

limt→∞ V̇
(
z̃(t),Ŵ (t),δ Λ̂(t)

)
= 0, and hence, limt→∞e(t) = 0 and limt→∞ṽ(t) = 0, one still needs to show that

V̈
(
z̃(t),W̃ (t),δ Λ̂(t)

)
is bounded. To elucidate this point, note that it follows from the proofs of Theorem
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6.3.1 and Lemma 6.4.1 that one can write

V̈
(
z̃(t),W̃ (t),δ Λ̂(t)

)
= −2ε z̃T(t)P ˙̃z(t)

= −2ε z̃T(t)P
(

Fr
(
Ŵ (t),δ Λ̂(t)

)
z̃(t)−B∗

(
W̃ T(t)e(t)+δ Λ̃(t)ṽ(t)

)
−B∗

(
W̃ T(t)xr(t)+δ Λ̃(t)vr(t)

)
, (6.48)

where at first, it is not yet known that xr(t) and vr(t) are bounded due to the expanded reference models con-

sidered in (6.16) (for Theorem 6.3.1) and (6.40) (for Lemma 6.4.1). As shown in the proof of Theorem 6.3.1,

it is relatively straightforward to show boundedness of the expanded reference model given by (6.16) under

Assumption 6.3.1, which implies the quadratic stability of Fr
(
Ŵ (t),δ Λ̂(t)

)
, and owing to the boundedness

of the term “Grc(t)”; thus one can use Barbalat’s lemma to conclude the proof. This is where the analysis

will differ for the modified expanded reference model given by (6.40), since it now includes the command

governor architecture in the term “Grcg(t)”.

Motivated by the discussion in Remark 6.4.1, we now show that the proposed implementation

of the command governor architecture not only ensures boundedness of the expanded reference model

given by (6.40), but also guarantees that the trajectories of the expanded reference model given in (6.40)

asymptotically converges to the trajectories of the ideal reference model given by (6.4), capturing the desired

closed-loop system performance. For this purpose, we restate the ideal reference model dynamics given by

(6.4) with new notation as

ẋri(t) = Arxri(t)+Brc(t), xri(0) = xri0, (6.49)

where xri(t) ∈ Rn is the ideal reference model state. In addition, we define x̃r(t) , xr(t)− xri(t) to be the

error between the modified reference model and the ideal reference model states.

Theorem 6.4.1 Consider the uncertain dynamical system given by (6.1), the actuator dynamics given by

(6.2), the ideal reference model given by (6.49), the modified expanded reference model given by (6.40), the

command governor architecture given by (6.41), (6.42), (6.43), (6.44), and (6.45), the feedback control law

given by (6.46), and the update laws given by (6.25) and (6.26). Under Assumption 6.3.1, then (xr(t),vr(t))

are bounded, limt→∞x̃r(t) = 0, limt→∞ρ(t) = 0, limt→∞e(t) = 0, and limt→∞ṽ(t) = 0.
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Proof. We first write the modified expanded reference model given by (6.40) in its augmented form

as ẋr(t)

v̇r(t)


︸ ︷︷ ︸

żr(t)

=

 A+BŴ T(t) B
(
Im +δ Λ̂(t)

)
−M

(
K1 +Ŵ T(t)

)
−M

(
Im +δ Λ̂(t)

)


︸ ︷︷ ︸
Fr

(
Ŵ (t),δ Λ̂(t)

)

xr(t)

vr(t)


︸ ︷︷ ︸

zr(t)

+

0n×m

MK2


︸ ︷︷ ︸

Gr

cg(t). (6.50)

Considering the xr(t) dynamics, we add and subtract the terms “BK1xr(t)” and “BK2c(t)” such that one can

write

ẋr(t) =
(
A−BK1

)
xr(t)+BK2c(t)+B

(
K1xr(t)−K2c(t)+Ŵ T(t)xr(t)+

(
Im +δ Λ̂(t)

)
vr(t)

)
= Arxr(t)+Brc(t)+B

((
K1 +Ŵ T(t)

)
xr(t)+

(
Im +δ Λ̂(t)

)
vr(t)−K2c(t)

)
, (6.51)

which can be equivalently written using (6.43) as

ẋr(t) = Arxr(t)+Brc(t)+Bρ(t). (6.52)

Now, it follows from (6.49) and (6.52) that the reference model error dynamics between the ideal reference

model and the proposed modified reference model can be given by

˙̃xr(t) = Arx̃r(t)+Bρ(t). (6.53)

From (6.53), if we can show ρ(t)→ 0 as t→∞, then the modified reference model trajectories will converge

to the ideal reference model trajectories. In light of this, we differentiate ρ(t) in time to obtain the following

dynamics

ρ̇(t) = ˙̂W T(t)xr(t)+
(
K1 +Ŵ T(t)

)
ẋr(t)−K2ċ(t)+δ

˙̂
Λ(t)vr(t)+

(
Im +δ Λ̂(t)

)
v̇r(t). (6.54)

Using the xr(t) and vr(t) dynamics of (6.50) in (6.54) yields

ρ̇(t) = ˙̂W T(t)xr(t)+
(
K1 +Ŵ T(t)

)((
A+BŴ T(t)

)
xr(t)+B

(
Im +δ Λ̂(t)

)
vr(t)

)
−K2ċ(t)+δ

˙̂
Λ(t)vr(t)

+
(
Im +δ Λ̂(t)

)[
−M

(
K1 +Ŵ T(t)

)
xr(t)−M

(
Im +δ Λ̂(t)

)
vr(t)+MK2 +ξ (t)

]
. (6.55)
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Using the command governor signal (6.42) in (6.55) gives the following

ρ̇(t) = ˙̂W T(t)xr(t)+
(
K1 +Ŵ T(t)

)((
A+BŴ T(t)

)
xr(t)+B

(
Im +δ Λ̂(t)

)
vr(t)

)
−K2ċ(t)+δ

˙̂
Λ(t)vr(t)

+
(
Im +δ Λ̂(t)

)[
−M

(
K1 +Ŵ T(t)

)
xr(t)−M

(
Im +δ Λ̂(t)

)
vr(t)+MK2−φ2(t)

]
−µρ(t)−φ1(t) (6.56)

where applying the signals (6.44) and (6.45) results in the following dynamics

ρ̇(t) = −µρ(t). (6.57)

Now, using (6.53) and (6.57), the error dynamics between the reference models can be written compactly as

 ˙̃xr(t)

ρ̇(t)


︸ ︷︷ ︸

χ̇r(t)

=

 Ar B

0m×n −µIm


︸ ︷︷ ︸

Ar

x̃r(t)

ρ(t)


︸ ︷︷ ︸

χr(t)

. (6.58)

Since Ar is Hurwitz, µ > 0, and Ar is in upper triangular form, limt→∞x̃r(t) = 0 and limt→∞ρ(t) = 0 are

immediate.

Finally, since xri(t) is bounded and xr(t) = x̃r(t)+ xri(t), it follows that xr(t) is bounded, and since

xr is bounded and ρ(t) is bounded, and owing to the projection based weight update laws, Ŵ (t) and δ Λ̂(t)

are both bounded, and since the input command c(t) is bounded, it follows from (6.43) that vr(t) is bounded.

Now, as a consequence of Lemma 6.4.1, z̃(t), W̃ (t) and δ Λ̃(t) are all bounded, such that it can now be

concluded that V̈
(
z̃(t),W̃ (t),δ Λ̃(t)

)
as given by (6.48) is bounded. Barbalat’s lemma [88] can now be used

to conclude that limt→∞V̇
(
z̃(t),W̃ (t),δ Λ̃(t)

)
= 0, and hence, limt→∞e(t) = 0 and limt→∞ṽ(t) = 0. �

Remark 6.4.2 The performance guarantees obtained in this section can be seen from the augmented dy-

namics given by (6.58), which show that the modified expanded reference model trajectories converge to the

ideal reference model trajectories when

χr(t) = eArt χr(0), (6.59)
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vanishes, where it is well known that the rate of convergence depends on the maximum eigenvalue of Ar.

Moreover, if χr(0) = 0 can be selected, then χr(t) = 0 for all time and the modified expanded reference

model trajectories exactly capture the desired closed-loop system performance of the ideal reference model.

It should be noted here that since the ideal reference model dynamics are solely used for analysis purposes,

one can trivially select xri0 = xr0 such that with ρ(0) = 0 it follows that χr(0) = 0 holds.

Remark 6.4.3 From Theorem 6.4.1, since limt→∞e(t) = 0 (meaning that the uncertain dynamical system

trajectories asymptotically converge to the modified expanded reference model trajectories) and limt→∞x̃r(t)=

0 (meaning the modified expanded reference model trajectories converge to the ideal reference model

trajectories) then asymptotic convergence between the uncertain dynamical system and ideal reference

model trajectories is achieved.

At this point, the proposed adaptive control architecture using expanded reference models is shown

to allow for convergence of the trajectories of the uncertain dynamical system to the trajectories of a desired

reference model, where the desired reference model does not include the unpredictable effect from the

transients of the system error e(t), and can also be modified to further guarantee convergence to the ideal

reference model given by (6.4) (also given by (6.49)). Yet, the construction of the proposed expanded

reference model designs require knowledge of the actuator bandwidths which may not always be possible.

For this reason, the next section relaxes this condition to allow for a more robust design in the presence of

unknown actuator bandwidths.

6.5 Robustness of Expanded Reference Model Architecture to Unknown Actuator Bandwidths

In this section, we consider the case in which the actuator bandwidths are not completely known

such that the proposed expanded reference model needs to be redesigned using an estimate of the unknown

part allowing for a more robust architecture. For this purpose, we parameterize the actuator bandwidth

matrix such that (6.2) is now given by

v̇(t) = −
(
M0 +δM

)(
v(t)−u(t)

)
, v(0) = v0, (6.60)

where M0 ∈ Rm×m
+ ∩Dm×m represents a known part of the actuator bandwidths and δM ∈ Rm×m ∩Dm×m

represents the unknown variations in the actuator bandwidths.
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To obtain the same performance guarantees as Section 6.4, we again augment a command governor

architecture with the expanded reference model now given by

ẋr(t)

v̇r(t)


︸ ︷︷ ︸

żr(t)

=

 A+BŴ T(t) B
(
Im +δ Λ̂(t)

)
−
(
M0 +δM̂(t)

)(
K1 +Ŵ T(t)

)
−
(
M0 +δM̂(t)

)(
Im +δ Λ̂(t)

)


︸ ︷︷ ︸
Fr

(
Ŵ (t),δ Λ̂(t),δM̂(t)

)

xr(t)

vr(t)


︸ ︷︷ ︸

zr(t)

+

 0n×m(
M0 +δM̂(t)

)
K2


︸ ︷︷ ︸

Gr

(
δM̂(t)

)
cg(t), (6.61)

where δM̂(t) ∈ Rm×m∩Dm×m is an estimate of δM constructed from the elemental weight update laws

δ ˙̂mi(t) = −βiProj
[
δ m̂i(t), σi(·)z̃T(t)PGei

]
, δ m̂i(0) = δ m̂i0, i = 1, ...,m, (6.62)

where βi ∈ R+ is the learning rate for the respective estimates, σi(·) is the ith element of the vector re-

sulting from the feedback given by σ(·) ,
(
Im + δ Λ̂(t)

)
v(t) +

(
K1 + Ŵ T(t)

)
x(t)−K2cg(t) ∈ Rm, G =

[0m×n, Im×m]
T ∈ R(n+m)×m, and ei is the standard basis for i = 1, ...,m as in the previous section. Note

here again by elementally updating we can set δ m̂(t), diag([δ m̂1(t),δ m̂2(t), ... ,δ m̂m(t)]). The elemental

projection bounds are defined such that δ m̂i,min ≤ δ m̂i(t)≤ δ m̂i,max, for i = 1, ...,m.

In (6.61), the signal cg(t) is given by

cg(t) = c(t)+D(t)ξ (t), (6.63)

where c(t) ∈ Rm is the uniformly continuous smooth and bounded reference command used in the previous

sections (again, since c(t) is a user-defined smooth function, we implicitly assume that ċ(t) is bounded as

well as available), D(t) , K−1
2

(
M0 + δM̂(t)

)−1∈ Rm×m. Note here that in practice, the nominal known

part of the actuator bandwidth M0 is larger than the variation given by δM such that one can select the

projection bounds on δM̂(t) to ensure (M0 + δM̂(t))−1 is implementable. Similar to Section 6.4, the

command governor output ξ (t) ∈ Rm is given by

ξ (t) =
(
Im +δ Λ̂(t)

)−1(−µρ(t)−φ
∗
1 (t)

)
−φ
∗
2 (t), (6.64)
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where µ ∈ R+ is the command governor gain, ρ(t) ∈ Rm is the command governor state given by (6.43),

φ ∗1 (t) = φ1(t) ∈ Rm with φ1(t) given by (6.44), and the signal φ ∗2 (t) ∈ Rm satisfies10

φ2(t) , −
(
M0 +δM̂(t)

)(
K1 +Ŵ T(t)

)
xr(t)−

(
M0 +δM̂(t)

)(
Im +δ Λ̂(t)

)
vr(t)

+
(
M0 +δM̂(t)

)
K2c(t). (6.65)

In addition, it should be noted that K1 ∈ Rm×n and K2 ∈ Rm×m are the same nominal control gains given in

Sections 6.3 and 6.4, Ŵ ∈ Rn×m satisfies the weight update law given by (6.25), and δ Λ̂(t), diag([δ λ̂1(t),

δ λ̂2(t), ...,δ λ̂m(t)]) satisfies the elemental update law given by (6.26), and the feedback control law is given

by (6.46).

By adding and subtracting BŴ T(t)x(t) and Bδ Λ̂(t)v(t) to (6.1), adding and subtracting δM̂(t)

·
(
v(t)− u(t)

)
to (6.60), and using (6.46), we can write the augmented uncertain dynamical system and

actuator dynamics in compact form as

ż(t) = Fr
(
Ŵ (t),δ Λ̂(t),δM̂(t)

)
z(t)+Gr

(
δM̂(t)

)
cg(t)

−B∗
(
W̃ T(t)x(t)+δ Λ̃(t)v(t)

)
+GδM̃(t)σ(·), (6.66)

where δM̃(t), δM̂(t)−δM. It then follows from (6.61) and (6.66) that the system error dynamics can be

given as

˙̃z(t) = Fr
(
Ŵ (t),δ Λ̂(t),δM̂(t)

)
z̃(t)−B∗

(
W̃ T(t)x(t)+δ Λ̃(t)v(t)

)
+GδM̃(t)σ(·) z̃(0) = z̃0. (6.67)

In addition, owing to the diagonal structure of δ Λ̃(t) and δM̃(t), (6.67) can be equivalently written

˙̃z(t) = Fr
(
Ŵ (t),δ Λ̂(t)δM̂(t)

)
z̃(t)−B∗

(
W̃ T(t)x(t)+

m

∑
i=1

eiδ λ̃i(t)vi(t)
)
+G

m

∑
i=1

eiδ m̃i(t)σi(·). (6.68)

The following assumption, which is a slightly modified version of Assumption 6.3.1, is necessary for the

results in this section.
10Here we refer to the proof of Theorem 6.5.1 and particularly (6.79) and (6.80) for how φ∗1 (t) and φ∗2 (t) are designed for this

section.
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Assumption 6.5.1 The matrix given by

A
(
Ŵ (t),δ Λ̂(t),δM̂(t),ε

)
=

 A+BŴ T(t)+ ε

2 In B
(
Im +δ Λ̂(t)

)
−
(
M0 +δM̂(t)

)(
K1 +Ŵ T(t)

)
−
(
M0 +δM̂(t)

)(
Im +δ Λ̂(t)

)
+ ε

2 Im

 , (6.69)

with ε ∈ R+ being a design parameter, is quadratically stable.

Remark 6.5.1 As shown in Section 6.3, we can similarly use LMIs to satisfy the quadratic stability of

(6.69), for given projection bounds Ŵmax, δ λ̂max, and δ m̂max, on the elements of Ŵ (t), δ Λ̂(t), and δM̂(t)

respectively, for the known parts of the actuator bandwidths given by M0, and for the design parameter ε .

For this purpose, we first write (6.69) as

A
(
·
)

=

 A+BŴ T(t)+ ε

2 In

−M0K1−M0Ŵ T(t)−δM̂(t)K1−δM̂(t)Ŵ T(t)

. . .
B
(
Im +δ Λ̂(t)

)
−M0−M0δ Λ̂(t)−δM̂(t)−δM̂(t)δ Λ̂(t)+ ε

2 Im

 . (6.70)

Now, let W i1,...,i f ∈Rn×m be defined as (6.33) and δΛi1,...,ig ∈Rm×m∩Dm×m be defined as (6.34) to represent

the corners of the hypercubes defining the variation of Ŵ (t) and δ Λ̂(t) respectively. Similarly, let δMi1,...,ih

be defined as

δMi1,...,ih = diag
([

i1δ m̂max,1 +(1− i1)δ m̂min,1, ..., imδ m̂max,m +(1− im)δ m̂min,m
])

, (6.71)

where ih ∈ {0,1}, h ∈ {1, ...,2m}, such that δMi1,...,ih represents the corners of the hypercube defining

the variation of δM̂(t). In addition, due to the product terms of δM̂(t)Ŵ T(t) and δM̂(t)δ Λ̂(t) in (6.70),

let the variations of Ω(t) , δM̂(t)Ŵ T(t) and Π(t) , δM̂(t)δ Λ̂(t) be respectively defined as Ωi1,...,ir =

δMi1,...,ihW i1,...,i f and Πi1,...,is = δMi1,...,ihδΛi1,...,ig , where r ∈
{

1, ...,2m2+n
}

and s ∈
{

1, ...,2m+1
}

. Then

Ai1,...,ip =

 A+BW T
i1,...,i f

+ ε

2 In

−M0K1−M0W T
i1,...,i f

−δMi1,...,ihK1−Ωi1,...,ir
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. . .
B
(
Im +δΛi1,...,ig

)
−M0−M0δΛi1,...,ig−δMi1,...,ih−Πi1,...,is +

ε

2 Im

 , (6.72)

represents the corners of the hypercube constructed from all the permutations of W i1,...,i f , δΛi1, ...,ig , δMi1,...,ih ,

Ωi1,...,ir , and Πi1,...,is . For a given M0, it can then be shown that

AT
i1,...,ip

P+PAi1,...,ip < 0, P > 0, (6.73)

implies that AT
(
Ŵ (t),δ Λ̂(t),δM̂(t),ε

)
P +PA

(
Ŵ (t),δ Λ̂(t),δM̂(t),ε

)
< 0 [96, 99]; thus, one can solve

the LMI given by (6.73) to calculate P , which is then used in the weight update laws (6.25), (6.26), and

(6.62).

Now that Assumption 6.5.1 can be satisfied through the use of LMIs as shown in Remark 6.5.1, we

are ready to state the following theorem.

Theorem 6.5.1 Consider the uncertain dynamical system given by (6.1), the actuator dynamics given by

(6.60), the ideal reference model given by (6.49), the expanded reference model given by (6.61), the com-

mand governor architecture given by (6.63), (6.64), (6.43), (6.44), and (6.65), the feedback control law

given by (6.46), and the update laws given by (6.25), (6.26), (6.62). Under Assumption 6.5.1, the solution(
z̃(t),W̃ (t),δ Λ̃(t),δM̃(t)

)
of the closed-loop dynamical system is bounded, limt→∞x̃r(t) = 0, limt→∞ρ(t) =

0, limt→∞e(t) = 0, and limt→∞ṽ(t) = 0.

Proof. To show the Lyapunov stability; hence, the boundedness of the solution
(
z̃(t),W̃ (t),δ Λ̃(t),

δM̃(t)
)
, consider the Lyapunov function candidate given by

V
(
z̃,W̃ ,δ Λ̃,δM̃

)
= z̃TP z̃+ γ

−1tr W̃ TW̃ +
m

∑
i=1

α
−1
i δ λ̃

2
i +

m

∑
i=1

β
−1
i δ m̃2

i . (6.74)

Note that V(0,0,0,0) = 0 and V(z̃,W̃ ,δ Λ̃,δM̃) > 0 for all (z̃,W̃ ,δ Λ̃,δM̃) 6= (0,0,0,0). Differentiating

(6.74) along the closed-loop system trajectories and using (6.25), (6.26), (6.62) yields

164



www.manaraa.com

V̇
(
z̃(t),W̃ (t),δ Λ̃(t),δM̃(t)

)
= 2z̃T(t)P

(
Fr
(
Ŵ (t),δ Λ̂(t),δM̂(t)

)
z̃(t)−B∗W̃ T(t)x(t)−B∗

m

∑
i=1

eiδ λ̃i(t)vi(t)

+G
m

∑
i=1

eiδ m̃i(t)σi(·)
)
+2γ

−1tr W̃ T(t) ˙̂W (t)+2
m

∑
i=1

α
−1
i δ λ̃i(t)δ

˙̂
λi(t)

+2
m

∑
i=1

β
−1
i δ m̃i(t)δ ˙̂mi(t)

= z̃T(t)
(

FT
r
(
Ŵ (t),δ Λ̂(t),δM̂(t)

)
P+PFr

(
Ŵ (t),δ Λ̂(t),δM̂(t)

))
z̃(t)

−2z̃T(t)PB∗W̃ T(t)x(t)+2γ
−1tr W̃ T(t) ˙̂W (t)

−2z̃T(t)PB∗
(
e1δ λ̃1(t)v1(t)+ e2δ λ̃2(t)v2(t)+ · · ·+ emδ λ̃m(t)vm(t)

)
+2
(
α
−1
1 δ λ̃1(t)δ

˙̂
λ1(t)+α

−1
2 δ λ̃2(t)δ

˙̂
λ2(t)+ · · ·+α

−1
m δ λ̃m(t)δ

˙̂
λm(t)

)
+2z̃T(t)PG

(
e1δ m̃1(t)σ1(·)+ e2δ m̃2(t)σ2(·)+ · · ·+ emδ m̃m(t)σm(·)

)
+2
(
β
−1
1 δ m̃1(t)δ ˙̂m1(t)+β

−1
2 δ m̃2(t)δ ˙̂m2(t)+ · · ·+β

−1
m δ m̃m(t)δ ˙̂mm(t)

)
= z̃T(t)

(
FT

r
(
Ŵ (t),δ Λ̂(t),δM̂(t)

)
P+PFr

(
Ŵ (t),δ Λ̂(t),δM̂(t)

))
z̃(t)

+2γ
−1tr W̃ T(t)

(
˙̂W (t)− γx(t)z̃T(t)PB∗

)
+2

m

∑
i=1

α
−1
i δ λ̃i(t)

(
δ

˙̂
λi(t)−αivi(t)z̃T(t)PB∗ei

)
+2

m

∑
i=1

β
−1
i δ m̃i(t)

(
δ ˙̂mi(t)+βiσi(·)z̃T(t)PGei

)
≤ z̃T(t)

(
FT

r
(
Ŵ (t),δ Λ̂(t),δM̂(t)

)
P+PFr

(
Ŵ (t),δ Λ̂(t),δM̂(t)

))
z̃(t). (6.75)

Following similar steps as the proof of Theorem 6.3.1, one can show under Assumption 6.5.1 (satisfied

using LMIs, see Remark 6.5.1), that (6.75) reduces to V̇
(
z̃(t),W̃ (t),δ Λ̃(t),δM̃(t)

)
≤ −ε z̃T(t)P z̃(t) ≤ 0,

which guarantees the boundedness of the solution
(
z̃(t),W̃ (t),δ Λ̃(t),δM̃(t)

)
.

Now, following similar steps as the proof of Theorem 6.4.1, by adding and subtracting the terms

“BK1xr(t)” and “BK2c(t)” to the xr(t) dynamics of the expanded reference model given by (6.61) we can

write

ẋr(t) = Arxr(t)+Brc(t)+Bρ(t). (6.76)

From (6.49) and (6.76) the reference model error dynamics can be given as

˙̃xr(t) = Arx̃r(t)+Bρ(t). (6.77)
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Differentiating ρ(t) in time, we obtain the following dynamics

ρ̇(t) = ˙̂W T(t)xr(t)+
(
K1 +Ŵ T(t)

)
ẋr(t)−K2ċ(t)+δ

˙̂
Λ(t)vr(t)+

(
Im +δ Λ̂(t)

)
v̇r(t), (6.78)

and using the xr(t) and vr(t) dynamics of (6.61) in (6.78) yields

ρ̇(t) = ˙̂W T(t)xr(t)+
(
K1 +Ŵ T(t)

)((
A+BŴ T(t)

)
xr(t)+B

(
Im +δ Λ̂(t)

)
vr(t)

)
−K2ċ(t)+δ

˙̂
Λ(t)vr(t)

+
(
Im +δ Λ̂(t)

)[
−
(
M0 +δM̂(t)

)(
K1 +Ŵ T(t)

)
xr(t)−

(
M0 +δM̂(t)

)(
Im +δ Λ̂(t)

)
vr(t)

+
(
M0 +δM̂(t)

)
K2 +ξ (t)

]
. (6.79)

Using the command governor signal (6.64) in (6.79) gives the following

ρ̇(t) = ˙̂W T(t)xr(t)+
(
K1 +Ŵ T(t)

)((
A+BŴ T(t)

)
xr(t)+B

(
Im +δ Λ̂(t)

)
vr(t)

)
−K2ċ(t)+δ

˙̂
Λ(t)vr(t)

+
(
Im +δ Λ̂(t)

)[
−
(
M0 +δM̂(t)

)(
K1 +Ŵ T(t)

)
xr(t)−

(
M0 +δM̂(t)

)(
Im +δ Λ̂(t)

)
vr(t)

+
(
M0 +δM̂(t)

)
K2−φ

∗
2 (t)

]
−µρ(t)−φ

∗
1 (t) (6.80)

where applying the signals (6.44) and (6.65), (6.80) reduces to ρ̇(t) =−µρ(t), such that the dynamics can

be augmented with (6.77) as

 ˙̃xr(t)

ρ̇(t)

 =

 Ar B

0m×n −µIm


x̃r(t)

ρ(t)

 . (6.81)

Since Ar is Hurwitz, µ > 0, and (6.81) is in upper triangular form, limt→∞x̃r(t) = 0 and limt→∞ρ(t) = 0 are

immediate.

Finally, since xri(t) is bounded and xr(t) = x̃r(t) + xri(t), then xr(t) is bounded, and since xr is

bounded and ρ(t) is bounded, and owing to the projection based weight update laws, Ŵ (t), δ Λ̂(t), and

δM̂(t) are all bounded, and since the input command c(t) is bounded, it follows from (6.43) that vr(t) is

bounded. In addition, from the Lyapunov stability of the solution
(
z̃(t),W̃ (t),δ Λ̃(t),δM̃(t)

)
we know z̃(t),

W̃ (t), δ Λ̃(t), and δM̃(t) are all bounded, such that it can now be concluded that V̈
(
z̃(t),W̃ (t),δ Λ̃(t),δM̃(t)

)
is bounded. By Barbalat’s lemma [88], limt→∞V̇

(
z̃(t),W̃ (t),δ Λ̃(t),δM̃(t)

)
= 0; hence, limt→∞e(t) = 0 and

limt→∞ṽ(t) = 0. �
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Remark 6.5.2 The conclusions noted in Remarks 6.4.2 and 6.4.3 can be made here as well, but now for the

case in which the actuator bandwidths are unknown.

The next section considers an application to a hypersonic vehicle, where we apply the most general

form of the proposed adaptive control architecture given in this section.

6.6 Illustrative Example

To elucidate our proposed approach to the actuator dynamics problem, we provide the following

application to a hypersonic vehicle. Specifically, consider the uncertain hypersonic vehicle longitudinal

dynamics given by the short-period approximation as

ẋ(t) =

−2.39×10−1 1

4.26 −1.19×10−1


︸ ︷︷ ︸

A

x(t)+

−1.33×10−4

−1.84×10−1


︸ ︷︷ ︸

B

(
λv(t)+W Tx(t)

)
, (6.82)

with zero initial conditions and the state vector being defined as x(t) = [α(t),q(t)]T, where α(t) denotes the

angle-of-attack and q(t) denotes the pitch rate. The uncertainty is considered to be W = [−100 .01]T such

that it dominantly effects the stability derivative Cmα
. Specifically, the value −100 creates a 400% increase

in Cmα
, destabilizing the nominal closed-loop system, whereas the second value 0.01 can be considered to

be small since it does not significantly effect the closed-loop performance of the hypersonic vehicle, which

is lightly damped. In addition, the control effectiveness λ = 1+δλ , with δλ being the unknown variation,

is considered to be 25% deficient such that δλ = −0.25. The actuator output v(t) is given by the actuator

dynamics

v̇(t) =−m(v(t)−u(t)), (6.83)

where u(t) denotes the elevator deflection command and m is the actuator bandwidth which is scalar since

we are considering a single input control channel. The actuator bandwidth is m = 10± 0.25 rad/sec, such

that it can be parameterized as m = m0 + δm, with m0 = 10 rad/sec and δm ∈ [−0.25,0.25] rad/sec. For

this example, we set the unknown portion as δm =−0.25 rad/sec such that there is less available bandwidth

than the assumed m0 value.
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Linear quadratic regulator theory [91] is used to design the nominal controller for both the proposed

control design and a hedging based control design (for comparison purposes). The feedback gain matrix

K1 is designed such that Ar = A−BK1 is Hurwitz using the weighting matrices Q = diag([5×105 103]) to

penalize the states and R = 25 to penalize the control input, resulting in K1 = − [156.3459, 40.9615] that

has a desirable 65.4◦ phase margin and a crossover frequency of 7.95 rad/sec. The feedforward gain K2

is designed such that the desired angle-of-attack position α(t) is followed. For this purpose, using E =

[1,0], the gain K2 is calculated as K2 =−(EA−1
r B)−1 =−143.2845. The desired angle-of-attack command

in degrees is generated using c(t) = 2sin(0.5t). In addition, the same learning gains are used for both

controllers given by Γ = 103, α = 10, and β = 10. For hedging based control design, the solution to

AT
r P+PAr+R1 = 0 is calculated with R1 = diag[103, 103] (selected as in [118], in which it was appropriately

tuned for desirable performance). In the proposed controller we use the feasible solution P from the LMI

analysis in Remark 6.5.1 which can be obtained for the consider example set-up and with the selected

elemental projection bounds given by −105≤
[
Ŵ (t)

]
1 ≤ 0, 0≤

[
Ŵ (t)

]
2 ≤ 0.1, −0.2625≤ δ λ̂ (t)≤ 0, and

|δ m̂(t)| ≤ 0.2625.

Figures 6.1 and 6.2 highlight the performance guarantees discussed in Remark 6.4.2 (and Remark

6.5.2). In particular, Figure 6.1 shows the convergence of the proposed expanded reference model trajec-

tories to the ideal reference model trajectories for different values of µ . From Remark 6.4.2 and for the

considered example set-up we have

Ar =


−0.2599 0.9946 −0.0001

−24.5199 −7.6583 −0.1841

0 0 −µ

 . (6.84)

For the three different values of µ shown in Figure 6.1, the resulting rates of convergence matched to the

µ value follow as
(
µ = 0.5,λmax(Ar) = −0.5

)
,
(
µ = 1.0,λmax(Ar) = −1.0

)
, and

(
µ = 10, λmax(Ar) =

−3.9591
)
. These correspond to the approximately 8 sec, 4 sec, and 1 sec convergence times depicted in

Figure 6.1. Furthermore, Figure 6.2 shows the case in which the initial conditions are zero and the proposed

expanded reference model trajectories captures the ideal reference model trajectories exactly.

Figures 6.3 and 6.4 compare the control performance between the proposed adaptive control archi-

tecture using expanded reference models augmented with a command governor architecture and a hedging

168



www.manaraa.com

based adaptive control architecture. Specifically, it can be seen in Figure 6.3 that the proposed expanded ref-

erence model trajectories identically capture the ideal reference model trajectories (i.e., χr(0) = 0) whereas

due to the transients of the system error signal e(t), the hedged reference model trajectories deviate from

the ideal reference model trajectories. The actual state trajectories of the uncertain hypersonic vehicle also

converge to the expanded reference model trajectories (hence the ideal reference model trajectories) for

the proposed adaptive control architecture quicker than the hedging based adaptive control architecture. In

addition, Figure 6.4 shows that the magnitude of the applied adaptive control signal and actuator output

is less for the proposed adaptive control architecture as opposed to the hedging based adaptive control

architecture.
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Figure 6.1: Convergence of expanded reference model trajectories to the ideal reference model trajectories
for different rates of convergence.
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Figure 6.2: Expanded reference model trajectories exactly capturing the ideal reference model trajectories
for zero initial conditions.

Figure 6.3: Comparison of the proposed expanded reference model control performance and a hedging
based control performance.
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Figure 6.4: Control inputs and actuator outputs for Figure 6.3.

6.7 Conclusion

In this paper, we documented a new model reference adaptive control architecture for uncertain

dynamical systems with actuator dynamics. We first showed that the trajectories of the expanded refer-

ence model remain predictably close to the trajectories of the ideal reference model as compared to the

hedging approach, and we then show that asymptotic convergence to the ideal reference model trajectories

is guaranteed by utilizing a new command governor architecture developed for the proposed expanded

reference model. In order to achieve a robust implementation in the presence of possible uncertainties

in the bandwidths of actuator channels, we also redesigned the expanded reference model with the estimate

of actuator bandwidths. Finally, a numerical application to a hypersonic vehicle model elucidated our

contributions and presented comparisons with the hedging approach.
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CHAPTER 7: DECENTRALIZED ADAPTIVE ARCHITECTURES FOR CONTROL OF

LARGE-SCALE ACTIVE-PASSIVE MODULAR SYSTEMS WITH STABILITY AND

PERFORMANCE GUARANTEES1,2

Decentralized control of large-scale active-passive modular systems is considered in this paper. The

considered class of large-scale systems consist of physically interconnected and generally heterogeneous

modules, where local control signals can only be applied to a subset of these modules (i.e., active modules)

and the rest do not admit any control signals (i.e., passive modules). Specifically, based on a set-theoretic

model reference adaptive control approach predicated on restricted potential functions, we design and

analyze decentralized command following control laws for each active module such that they can effectively

perform their tasks in the presence of unknown physical interconnections between modules and module-

level system uncertainties. The key feature of our framework allows the system error trajectories of the

active modules to be contained within a-priori, user-defined compact sets. Thus, they are guaranteed to

achieve strict performance guarantees, where this is of paramount importance for practical applications. In

addition to our theoretical findings and research contributions, the efficacy of the proposed decentralized

adaptive control architecture is demonstrated in an illustrative numerical example.

7.1 Introduction

The design and implementation of decentralized architectures for controlling complex large-scale

systems is a nontrivial control engineering task involving the consideration of components interacting with

the physical processes to be controlled. Specifically, large-scale systems are characterized by a large number

of highly-coupled heterogeneous components exchanging matter, energy, or information and have become

ubiquitous given the recent advances in embedded sensor and computation technologies. Examples of such

systems include but are not limited to network systems, power systems, communication systems, process

control systems, water systems, highway systems, and air traffic control systems (see, for example, [59, 60]

1This chapter is previously published in [134]. Permission is included in Appendix B.
2This chapter is a by-product of consulting work. Permission is included in Appendix B.
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and references therein). An important class of large-scale systems is modular systems in which there exists

a physical interconnection between modules. A major challenge in the control of modular systems is associ-

ated with the unknown physical interconnections between modules and module-level system uncertainties.

Although fixed-gain robust control design approaches (see, for example, [1, 135]) can be used

to handle the unknown physical interconnections and module-level system uncertainties, they require the

knowledge of bounds resulting from uncertainty parameterizations. However, characterization of these

bounds is not a trivial task especially for complex large-scale systems due to practical constraints involving

time and cost. To this end, the authors of [61–72] propose notable decentralized, partially decentralized, or

distributed adaptive control approaches, where their approaches have the ability to learn and suppress the

effect of such uncertainties, require less modeling information than do fixed-gain robust control approaches,

and significantly reduce the design and implementation of control architectures. Therefore, the adaptive na-

ture of these approaches provides an effective control design methodology for large-scale modular systems.

More specifically, the authors of [61–66] consider decentralized adaptive control approaches, where

no communication (i.e., information exchange) is allowed between the modules. The authors of [67–71]

consider partially decentralized adaptive control approaches in that they require every local controller to

access the desired closed-loop system trajectories of all other modules. This may not be feasible in practice

for highly-complex large-scale modular systems. Nevertheless, these approaches guarantee stability of

the overall large-scale modular system without necessarily making global assumptions. Departing from

these results, the authors of [72] proposed a distributed adaptive control approach with strict performance

guarantees, where only neighboring modules are allowed to communicate with each other. While this

approach does not require any global communication, it still requires modules to communicate with each

other through a graph topology and this may not always be feasible for certain practical applications of

large-scale modular systems. Another approach that gives strict performance guarantees is [73], where the

authors utilize an adaptive backstepping scheme.

It is of practical importance to note that the approaches documented in [61–73] require all modules

of a large-scale system to be controlled. However, this may not be possible especially for highly complex

large-scale modular systems. For example, there may exist a specific subset of modules in practice that

cannot be accessed or some of the modules can be subject to actuator failures in that it may not be possible

to drive such modules through control signals. In this case, the set of modules that cannot be driven by

control signals affect the others as unmodeled dynamics, which often have asymptotically stable unperturbed

173



www.manaraa.com

dynamics. Although there are a few approaches that consider decentralized adaptive control of large-scale

modular systems in the presence of unmodeled dynamics [136–139], these approaches do not necessarily

achieve strict performance guarantees on the overall closed-loop large-scale system. Throughout this paper,

we use the phrase active modules for the modules subject to local control signals and the phrase passive

modules for the modules that do not admit any control signals; therefore, they act as unmodeled dynamics

to the active modules in the sense of [136–139].

The overarching contribution of this paper is a new decentralized adaptive control architecture for

large-scale active-passive modular systems. Specifically, based on a set-theoretic adaptive control approach

predicated on restricted potential functions, we design and analyze decentralized command following control

laws for each active module such that they can effectively perform their tasks in the presence of unknown

physical interconnections between modules and module-level system uncertainties. The key feature of our

framework allows the system error trajectories of the active modules to be contained within a-priori, user-

defined compact sets. Thus, they are guaranteed to achieve strict performance guarantees, where this is

of paramount importance for practical applications. In addition to our theoretical findings and research

contributions, the efficacy of the proposed decentralized adaptive control architecture is also demonstrated

in an illustrative numerical example. Finally, a preliminary version of this paper appeared in [140]. The

present paper considerably goes beyond this version by providing comprehensive proofs of the main results,

a new and more challenging illustrative numerical example, and additional motivation and remarks on the

proposed decentralized adaptive control architecture for large-scale active-passive modular systems.

The notation used in this paper is fairly standard. Specifically, R denotes the set of real numbers,

Rn denotes the set of n× 1 real column vectors, Rn×m denotes the set of n×m real matrices, R+ (resp.

R+) denotes the set of positive (resp. non-negative-definite) real numbers, Rn×n
+ (resp. Rn×n

+ ) denotes

the set of n× n positive-definite (resp. non-negative-definite) real matrices, Dn×n denotes the set of n× n

real matrices with diagonal scalar entries, (·)T denotes transpose, (·)−1 denotes inverse, tr(·) denotes the

trace operator,
∣∣∣∣·∣∣∣∣2 denotes the Euclidian norm,

∣∣∣∣·∣∣∣∣F denotes the Frobenius matrix norm, “,” denotes

equality by definition, and λmin(A) (resp. λmax(A)) denotes the minimum (resp. maximum) eigenvalue of

the Hermitian matrix A.

The organization of this paper is as follows. Section 7.2 introduces the problem formulation of

the large-scale active-passive modular systems. Section 7.3 presents the proposed decentralized adaptive

control, while Section 7.4 provides the stability and performance guarantees of the proposed controller.

174



www.manaraa.com

An illustrative numerical example is provided in Section 7.5 to demonstrate the efficacy of the proposed

approach and conclusions are summarized in Section 7.6. It should be also noted for completeness that

a set-theoretic architecture is utilized in the previous work by the authors [72, 74]. However, the results

of [72] is in the context of distributed adaptive control; hence, the considered modules communicate with

each other through a graph topology as discussed above. Moreover, [72] does not consider the presence of

passive modules, which do exist in practice as also discussed above. Finally, the results of [74] is based on

the results in [72] and it is not at all in the context of large-scale active-passive modular systems.

7.2 Problem Formulation

The problem formulation for the decentralized control of large-scale active-passive modular systems

is introduced in this section. To this end, we start with the following necessary definition utilized throughout

this paper3.

Definition 7.2.1 Consider a large-scale modular system with N modules. Let NA ≤ N of the N modules be

subject to control signals and let the rest NP ≤ N of the N modules be not subject to any control signal,

where N = NA +NP. We then refer to the NA modules that are subject to control signals as active modules

and the rest NP of the N modules as passive modules.

We next consider the uncertain large-scale active-passive modular system G comprised of NA ≤ N

active modules given by

GAi : ẋi(t) = Aixi(t)+Bi[Λiui(t)+αi(x(t))+βi(z(t))], xi(0) = xi0, (7.1)

for i = 1, . . . ,NA, and NP ≤ N passive modules given by

GPi : żi(t) = Fizi(t)+Giδi(x(t)), zi(0) = zi0, (7.2)

for i = 1, . . . ,NP. In (7.1), xi(t) ∈Rni is the state vector of the active modules available for feedback, ui(t) ∈

Rmi is the control signal applied to the active modules, Ai ∈ Rni×ni is an unknown system matrix and Bi ∈

Rni×mi is a known control input matrix such that the pair (Ai,Bi) is controllable, and Λi ∈ Rmi×mi
+ ∩Dmi×mi

3Note that Definition 7.2.1 is consistent with the active-passive notion introduced in [141–146], where it is not related with the
passivity theory appearing in the control systems literature (see, for example, [147]).
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is an unknown control effectiveness matrix with positive entries on its diagonal. In addition, zi(t) ∈ Rpi is

the state vector of the passive modules and Fi ∈ Rpi×pi and Gi ∈ Rpi×qi are unknown matrices appearing

in (7.2). Furthermore, αi : R+×Rn1+n2+...+nNA → Rmi represents the unknown physical interconnections

between active modules, βi : R+×Rp1+p2+...+pNP → Rmi represents the effect on the active modules from

their unknown physical interconnections with the passive modules, and δi : R+ ×Rn1+n2+...+nNA → Rqi

represents the effect on the passive modules from their unknown physical interconnections with the active

modules. Finally, note that x(t), [xT
1 (t),x

T
2 (t), . . . ,x

T
NA
(t)]T and z(t), [zT

1 (t),z
T
2 (t), . . . ,z

T
NP
(t)]T.

Remark 7.2.1 To elucidate the large-scale active-passive modular system setup introduced in (7.1) and

(7.2), consider the example in Figure 7.1, which depicts a cutout of an aircraft with multiple controllable

flap surfaces along its wing allowing for flexible wing shaping [148–152]. In this representative example,

imagine that all flaps are connected through a flexible membrane and that a fault has occurred in flaps 3,

4, and 6, such that they no longer receive a control input, but still affect flaps 1, 2, and 5. In this case,

flaps 1, 2, and 5 are considered as active modules, GAi , i = 1,2,3, subject to decentralized controllers given

by CAi , i = 1,2,3. The active modules are interconnected with two passive modules GPi , i = 1,2 (flaps 3,

4, and 6, where flaps 3 and 4 are combined as GP1 , such that it is augmented in the sense that it consists

of two separate interconnected passive modules grouped as one passive module). In this setup, the active

module GA1 (flap 1) is interconnected with the active module GA2 (flap 2); hence, it only has the unknown

interconnection depicted by α1(x). The active module GA2 (flap 2) is interconnected with both the active

module GA1 (flap 1) and the augmented passive module GP1; hence, it has the unknown interconnections

depicted by α2(x) and β2(z). The same arguments can be made for the other modules used in this example.

For another representative example, see the mechanical system setup utilized in the illustrative numerical

example of Section 7.5.

Remark 7.2.2 The large-scale active-passive modular system setup introduced in (7.1) and (7.2) captures a

large-scale system G subject to unmodeled dynamics in the sense of [136–139], as discussed earlier. To see

this, consider Figure 7.2 as an example, where each active module is interconnected with a passive module

representing unmodeled dynamics for these active modules.

Consistent with the decentralized adaptive control literature (see, for example, [61–63, 66, 68]), we

make the following assumption for the large-scale active-passive modular system setup introduced in (7.1)

and (7.2).
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Figure 7.1: A large-scale modular system representation of wing shaping aircraft in Remark 7.2.1, where
thick lines represent unknown physical interconnections between the modules.

Figure 7.2: A large-scale modular system in Remark 7.2.2 with active modules (blue boxes) and passive
modules (yellow boxes), where thick lines represent unknown physical interconnections between the
modules.
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Assumption 7.2.1 The nonlinear functions αi, βi, and δi appearing in (7.1) and (7.2) satisfy

‖αi(x(t))‖2 ≤ α
∗
i

NA

∑
j=1

∥∥x j(t)
∥∥

2 , α
∗
i > 0, (7.3)

‖βi(z(t))‖2 ≤ β
∗
i

NP

∑
j=1

∥∥z j(t)
∥∥

2 , β
∗
i > 0, (7.4)

‖δi(x(t))‖2 ≤ δ
∗
i

NA

∑
j=1

∥∥x j(t)
∥∥

2 , δ
∗
i > 0, (7.5)

respectively, where α∗i , β ∗i , and δ ∗i denote unknown constants.

For the feasibility of a decentralized control solution for the large-scale active-passive modular

system setup introduced in (7.1) and (7.2), the following assumption is necessary and standard.

Assumption 7.2.2 The system matrices of the passive modules, Fi, which appear in the dynamics given by

(7.2), are Hurwitz.

Remark 7.2.3 As a direct consequence of Assumption 7.2.2, there exist constants ξ1i and ξ2i such that

‖zi(t)‖2 ≤ ξ1i +ξ2i ‖δi(x(t))‖2 . (7.6)

This can be seen by rewriting the passive module dynamics given by (7.2) as

zi(t) = eFitzi0 +
∫ t

0
eFi(t−τ)Giδi(x(τ))dτ. (7.7)

It now follows from [80] that zi(t) can be bounded by

‖zi(t)‖2 ≤ κ1ie−κ2it ‖zi0‖2 +
∫ t

0
κ1ie−κ2i(t−τ) ‖Gi‖F ‖δi(x(τ))‖2 dτ

≤ κ1ie−κ2it ‖zi0‖2 +
κ1i ‖Gi‖F

κ2i
sup0≤τ≤t ‖δi(x(τ))‖2 , (7.8)

where κ1i > 0 and 0 < κ2i < −ρ(Fi), ρ(Fi) , max{Re λi : λi ∈ spec(Fi)}. Noting that for an arbitrary

vector v(t), ‖v(t)‖
∞
= supt |v(t)| and ‖v(t)‖

∞
≤ ‖v(t)‖2 are true, we can further bound (7.8) by

‖zi(t)‖2 ≤ κ1ie−κ2it ‖zi0‖2 +
κ1i ‖Gi‖F

κ2i
‖δi(x(t))‖∞

≤ κ1ie−κ2it ‖zi0‖2 +
κ1i ‖Gi‖F

κ2i
‖δi(x(t))‖2 . (7.9)
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Finally, since the exponentially decaying function e−κ2it has a maximum of 1 at t = 0, we can let ξ1i ,

κ1i ‖zi0‖2 and ξ2i ,
κ1i‖Gi‖F

κ2i
and arrive at the result in (7.6).

To capture a desired closed-loop dynamical system performance for each active module, consider

the reference model for active modules given by

GAri : ẋri(t) = Arixri(t)+Brici(t), xri(0) = xri0, (7.10)

for i = 1, . . . ,NA, where xri(t) ∈Rni is the reference state vector, ci(t) ∈Rmi is a given uniformly continuous

bounded command, Ari ∈ Rni×ni is the Hurwitz reference model matrix, and Bri ∈ Rni×mi is the command

input matrix. Since ci(t) is bounded, it follows that ‖xri(t)‖2 ≤ x∗ri for i = 1, . . . ,NA, with x∗ri being the upper

bound for each active module reference model. We now make the following classical assumption in adaptive

control literature (see, for example, [6]).

Assumption 7.2.3 There exist gain matrices K1i ∈ Rmi×ni and K2i ∈ Rmi×mi such that Ari , Ai−BiK1i and

Bri , BiK2i hold.

Note that (7.1) can now be rewritten using Assumption 7.2.3 as

ẋi(t) = Arixi(t)+Brici(t)+BiΛi[ui(t)+W T
i σi(xi(t),ci(t))]+Bi[αi(x(t))+βi(z(t))], (7.11)

where Wi ,
[
Λ
−1
i K1i, −Λ

−1
i K2i

]T ∈ R(ni+mi)×mi is an unknown weight matrix and σi(xi(t),ci(t)),
[
xT

i (t),

cT
i (t)

]T ∈ Rni+mi is a known basis function. In addition, the error dynamics for the active modules follow

from (7.10) and (7.11) as

ėi(t) = Ariei(t)+BiΛi[ui(t)+W T
i σi(xi(t),ci(t))]+Bi[αi(x(t))+βi(z(t))], (7.12)

where ei(t), xi(t)− xri(t) is the system error for the active modules.

The decentralized control problem considered in this paper is now stated as follows. Subject to

Assumptions 7.2.1, 7.2.2, and 7.2.3, consider the large-scale modular system given by (7.1) and (7.2) with

NA active modules and NP passive modules. We aim at designing local control signals for each active module

such that the active module trajectories follow reference model trajectories, the system error trajectories are

restricted to a-priori, user-defined compact sets enforcing strict performance guarantees, and stability of
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the overall closed-loop large-scale system involving not only active modules but also passive modules is

achieved. For this purpose, the next section introduces the proposed set-theoretic decentralized adaptive

control architecture.

7.3 Decentralized Adaptive Control for Active-Passive Modular Systems

To address command following in the presence of unknown physical interconnections between

active and passive modules and module-level system uncertainties, this section proposes a set-theoretic

decentralized control architecture for the modular system presented in Section 7.2. To this end, we start

with the following necessary definitions.

Definition 7.3.1 Consider a convex hypercube in the form

Ω0 =
{

θ0 ∈ Rs : (θ min
0i ≤ θ0i ≤ θ

max
0i )i=1,2,...,s

}
, (7.13)

where Ω0 ∈ Rs, and θ min
0i and θ max

0i respectively represent the minimum and maximum bounds for the ith

component of the s-dimensional parameter vector θ0 (we set θ min
0i = −θ max

0i for the results of this paper

without loss of generality). Furthermore, for a sufficiently small positive constant ν0, consider another

hypercube in the form

Ων =
{

θ0 ∈ Rs : (θ min
0i +ν0 ≤ θ0i ≤ θ

max
0i −ν0)i=1,2,...,s

}
, (7.14)

where Ων ⊂Ω. The projection operator Proj : Rs×Rs→ Rs is then defined component-wise by

Proj(θ ,y),



(
θ max

0i −θ0i
ν0

)
yi, if θ0i > θ max

0i −ν0 and yi > 0,(
θ0i−θ min

0i
ν0

)
yi, if θ0i < θ min

0i +ν0 and yi < 0,

yi, otherwise,

where y ∈ Rs.

Remark 7.3.1 As it is known, it follows from Definition 7.3.1 that

(θ0−θ
∗
0 )

T(Proj(θ0,y)− y)≤ 0, (7.15)
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holds for θ0 ∈Ω0 and y ∈Rs [6]. Throughout the paper, we also use the generalization of (7.15) to matrices

as Projm(Θ,Y )= (Proj(col1(Θ),col1(Y )), . . . , Proj(colm(Θ), colm(Y ))) , where Θ∈Rn×m, Y ∈Rn×m, and

coli(·) denotes the i-th column operator. In this case, for a given matrix Θ∗,

tr
[
(Θ−Θ

∗)T(Projm(Θ,Y )−Y )
]
=

m

∑
i=1

[
coli(Θ−Θ

∗)T(Proj(coli(Θ),coli(Y ))− coli(Y ))
]
≤ 0 (7.16)

follows as a consequence of (7.15).

Definition 7.3.2 For a given vector y ∈ Rs, the tangent hyperbolic function is defined by

tanh(yT),
[
tanh(y(1)), . . . , tanh(y(s))

]T∈ Rs. (7.17)

Definition 7.3.3 Let ‖y‖H =
√

yTHy be a weighted Euclidean norm, where y ∈ Rs is a real column vector

and H ∈ Rs×s
+ . We define φ(‖y‖H), φ : Rs → R, to be a restricted potential function (barrier Lyapnunov

function) defined on the set

Dε , {y : ‖y‖H ∈ [0,ε)}, (7.18)

with ε ∈ R+ being an a priori, user-defined constant, if the following statements hold [74]:

• If ‖y‖H = 0, then φ(‖y‖H) = 0.

• If y ∈ Dε and ‖y‖H 6= 0, then φ(‖y‖H)> 0.

• If ‖y‖H→ ε , then φ(‖y‖H)→ ∞.

• φ(‖y‖H) is continuously differentiable on Dε .

• If y ∈ Dε , then φd(‖y‖H)> 0, where φd(‖y‖H),
dφ(‖y‖H)

d‖y‖2
H

.

• If y ∈ Dε , then 2φd(‖y‖H)‖y‖2
H−φ(‖y‖H)> 0.

Remark 7.3.2 As noted in [74], Definition 7.3.3 generalizes the definition of the restricted potential func-

tions (barrier Lyaponuv functions) used by the authors of [72, 153–157]. For example, a candidate restricted

potential function satisfying the conditions of Definition 7.3.3 has the form

φ(‖y‖H) =
‖y‖2

H
ε−‖y‖H

, y ∈ Dε . (7.19)
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To achieve command following in the presence of unknown physical interconnections between ac-

tive and passive modules and module-level system uncertainties, we propose the set-theoretic decentralized

adaptive control architecture constructed using restricted potential functions for the active modules GAi as

CAi : ui(t) = −Ŵ T
i (t)σi(xi(t),ci(t))− ψ̂i(t)tanh

(
φd
(
‖ei(t)‖Pi

)
eT

i (t)PiBi
)
−θ̂i(t)BT

i Piei(t), (7.20)

where Ŵi(t) ∈ Rni×mi is an estimate of Wi satisfying the projection operator-based weight update law

˙̂Wi(t) = γiProjm
[
Ŵi(t), φd

(
‖ei(t)‖Pi

)
σi(xi(t),ci(t))eT

i (t)PiBi
]
, Ŵi(0) = Ŵi0, (7.21)

which also includes restricted potential functions, where γi ∈ R+ is the learning rate gain and φd
(
‖ei(t)‖Pi

)
can be viewed as an error dependent learning rate. Moreover, ψ̂i(t) and θ̂i(t) are projection operator-based

adaptive terms satisfying

˙̂ψi(t) = µiProj
[
ψ̂i(t), φd

(
‖ei(t)‖Pi

)
eT

i (t)PiBitanh
(
φd
(
‖ei(t)‖Pi

)
eT

i (t)PiBi
)]
, (7.22)

ψ̂i(0) = ψ̂i0 ∈ R+,

˙̂
θi(t) = ηiProj

[
θ̂i(t), φd

(
‖ei(t)‖Pi

)∥∥BT
i Piei(t)

∥∥2
2

]
, (7.23)

θ̂i(0) = θ̂i0 ∈ R+,

with µi ∈ R+ and ηi ∈ R+ being design parameters. Note that since ψ̂i(0) ∈ R+ and θ̂i(0) ∈ R+, then

ψ̂i(t) ∈ R+ and θ̂i(t) ∈ R+ respectively hold. In (7.21), (7.22), and (7.23), Pi ∈ Rni×ni
+ is a solution of the

Lyapunov equation

0 = AT
riPi +PiAri +Ri, (7.24)

with Ri ∈ Rni×ni
+ . Since Ari is Hurwitz, note that from the converse Lyapunov theory [80] that there exists

a unique Pi satisfying (7.24) for a given Ri. Finally, we select the projection bounds for (7.21), (7.22), and

(7.23) to respectively satisfy

∣∣[Ŵi(t)] jiki

∣∣ ≤ Ŵi,max, ji+(ki−1)ni , ji = 1, ...,ni and ki = 1, ...,mi, (7.25)

0 ≤ ψ̂i(t) ≤ ψiρ1i, ψi ,
ξ̄i

λmin(Λi)
, ρ1i > 1, (7.26)

0 ≤ θ̂i(t) ≤ θiρ2i, θi ,
ξ ∗2iliNA

2λmin(Λi)
, ρ2i > 1, (7.27)
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where Ŵi,max, ji+(ki−1)ni ∈ R+ denotes element-wise projection bounds, ψiρ1i and θiρ2i respectively denote

the projection bounds for the adaptive terms given by (7.22) and (7.23) with ρ1i and ρ2i being free design

variables and ξ̄i ∈ R+ and ξ ∗2i ∈ R+ to be defined later, and li ∈ R+ is another free design variable4.

7.4 Stability and Performance Guarantees

In this section, we present the stability analysis and establish strict performance guarantees of the

set-theoretic decentralized control architecture proposed in Section 7.3. For this purpose, we first state the

system error dynamics for the active modules GAi as

ėi(t) = Ariei(t)−BiΛi

[
W̃ T

i (t)σi(xi(t),ci(t))+ ψ̂i(t)tanh
(
φd
(
‖ei(t)‖Pi

)
eT

i (t)PiBi
)

+θ̂i(t)BT
i Piei(t)

]
+Bi (αi(x(t))+βi(z(t))) , (7.28)

as a consequence of using (7.20) in (7.12), where W̃i(t) , Ŵi(t)−Wi. We then define xrmax = maxi {x∗ri},

ψ̃i(t) , ψ̂i(t)−ψi, θ̃i(t) , θ̂i(t)−θi, ξ ∗2i , α∗i +β ∗i NPmax j

{
ξ2 jδ

∗
j

}
, and ξ̄i , β ∗i NP ·max j

{
ξ1 j
}
+ ξ ∗2iNA

·xrmax . The next theorem presents the main result of this section.

Theorem 7.4.1 Consider the uncertain large-scale modular system G comprised of interconnected active

modules, GAi , and passive modules, GPi , described by (7.1) and (7.2), respectively, subject to Assumptions

7.2.1, 7.2.2, and 7.2.3. Additionally, consider the active module reference models given by (7.10) and

control laws given by (7.20), along with the update laws (7.21), (7.22), and (7.23). If ‖ei0‖Pi
< εi, then

the solution
(
ei(t),W̃i(t), ψ̃i(t), θ̃i(t),zi(t)

)
of the closed-loop dynamical large-scale modular system G is

bounded, where the active module system errors strictly satisfy the a-priori given, user-defined worst-case

performance bounds given by

‖ei(t)‖Pi
< εi, t ∈ R+. (7.29)

Proof. To show boundedness of the closed-loop dynamics of the active modules GAi , consider the

energy function Vi :Dei×Rdim(W̃i)×Rdim(ψ̃i)×Rdim(θ̃i)→ R+ given by

Vi
(
ei(t),W̃i(t), ψ̃i(t), θ̃i(t)

)
= φ

(
‖ei(t)‖Pi

)
+ γ
−1
i tr

(
W̃i(t)Λ

1
2
i

)T(
W̃i(t)Λ

1
2
i

)
+
(
µ
−1
i ψ̃

2
i (t)+η

−1
i θ̃

2
i (t)

)
λmin(Λi), (7.30)

4As standard in the adaptive control literature, one can choose all projection bounds to be sufficiently large without requiring
strict knowledge of the bounds on the unknown parameters.

183



www.manaraa.com

where Dei ,
{

ei(t) : ‖ei(t)‖Pi
< εi

}
and dim(W̃i), dim(ψ̃i), and dim(θ̃i) denote the dimensions of W̃i, ψ̃i,

and θ̃i, respectively. Note that Vi(0,0,0,0) = 0, Vi(ei,W̃i, ψ̃i, θ̃i)> 0 for all (ei,W̃i, ψ̃i, θ̃i) 6= (0,0,0,0), and

dφ
(
‖ei(t)‖Pi

)
dt

=
dφ
(
‖ei(t)‖Pi

)
d‖ei(t)‖2

Pi

d‖ei(t)‖2
Pi

dt

= 2φd
(
‖ei(t)‖Pi

)
eT

i (t)Piėi(t). (7.31)

Now, differentiating (7.30) and using (7.21) yields

V̇i
(
ei(t),W̃i(t), ψ̃i(t), θ̃i(t)

)
= 2φd

(
‖ei(t)‖Pi

)
eT

i (t)Piėi(t)+2γ
−1
i tr W̃ T

i (t)
˙̂Wi(t)Λi +2

(
µ
−1
i ψ̃i(t) ˙̂ψi(t)+η

−1
i θ̃i(t)

˙̂
θi(t)

)
λmin(Λi)

=−φd
(
‖ei(t)‖Pi

)
eT

i (t)Riei(t)−2φd
(
‖ei(t)‖Pi

)
eT

i (t)PiBiW̃ T
i (t)σi(xi(t),ci(t))

−2ψ̂i(t)φd
(
‖ei(t)‖Pi

)
eT

i (t)PiBiΛitanh
(
φd
(
‖ei(t)‖Pi

)
eT

i (t)PiBi
)

−2θ̂i(t)φd
(
‖ei(t)‖Pi

)
eT

i (t)PiBiΛiBT
i Piei(t)+2φd

(
‖ei(t)‖Pi

)
eT

i (t)PiBi (αi(x(t))+βi(z(t)))

+2tr W̃ T
i (t)Projm

[
Ŵi(t), φd

(
‖ei(t)‖Pi

)
σi(xi(t),ci(t))eT

i (t)PiBi
]

Λi

+2
(

µ
−1
i ψ̃i(t) ˙̂ψi(t)+η

−1
i θ̃i(t)

˙̂
θi(t)

)
λmin(Λi)

≤−φd
(
‖ei(t)‖Pi

)
eT

i (t)Riei(t)−2ψ̂i(t)φd
(
‖ei(t)‖Pi

)
eT

i (t)PiBiΛitanh
(
φd
(
‖ei(t)‖Pi

)
eT

i (t)PiBi
)

−2θ̂i(t)φd
(
‖ei(t)‖Pi

)
eT

i (t)PiBiΛiBT
i Piei(t)+2φd

(
‖ei(t)‖Pi

)
eT

i (t)PiBi (αi(x(t))+βi(z(t)))

+2
(

µ
−1
i ψ̃i(t) ˙̂ψi(t)+η

−1
i θ̃i

˙̂
θi(t)

)
λmin(Λi). (7.32)

As a direct consequence of the projection operator-based update laws for ψ̂i(t) and θ̂i(t), the inequalities

−2ψ̂i(t)φd
(
‖ei(t)‖Pi

)
eT

i (t)PiBiΛitanh
(
φd
(
‖ei(t)‖Pi

)
eT

i (t)PiBi
)

≤−2ψ̂i(t)φd
(
‖ei(t)‖Pi

)
eT

i (t)PiBiλmin(Λi)tanh
(
φd
(
‖ei(t)‖Pi

)
eT

i (t)PiBi
)
, (7.33)

and

−2θ̂i(t)φd
(
‖ei(t)‖Pi

)
eT

i (t)PiBiΛiBT
i Piei(t) ≤ −2θ̂i(t)φd

(
‖ei(t)‖Pi

)
λmin(Λi)

∥∥BT
i Piei(t)

∥∥2
2 , (7.34)

hold. Now, we can write (7.32) with (7.33) and (7.34) as
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V̇i
(
ei(t),W̃i(t), ψ̃i(t), θ̃i(t)

)
≤−φd

(
‖ei(t)‖Pi

)
λmin(Ri)‖ei(t)‖2

2 +2φd
(
‖ei(t)‖Pi

)∥∥BT
i Piei(t)

∥∥
2 ‖αi(x(t))+βi(z(t))‖2

−2ψ̂i(t)φd
(
‖ei(t)‖Pi

)
eT

i (t)PiBiλmin(Λi)tanh
(
φd
(
‖ei(t)‖Pi

)
eT

i (t)PiBi
)

−2θ̂i(t)φd
(
‖ei(t)‖Pi

)
λmin(Λi)

∥∥BT
i Piei(t)

∥∥2
2 +2

(
µ
−1
i ψ̃i(t) ˙̂ψi(t)+η

−1
i θ̃i(t)

˙̂
θi(t)

)
λmin(Λi). (7.35)

Next, note that

2φd
(
‖ei(t)‖Pi

)∥∥BT
i Piei(t)

∥∥
2 ‖αi(x(t))+βi(z(t))‖2

≤ 2φd
(
‖ei(t)‖Pi

)∥∥BT
i Piei(t)

∥∥
2

[
‖αi(x(t))‖2 +‖βi(z(t))‖2

]
≤ 2φd

(
‖ei(t)‖Pi

)∥∥BT
i Piei(t)

∥∥
2

[
α
∗
i

NA

∑
j=1

∥∥x j(t)
∥∥

2 +β
∗
i

NP

∑
j=1

∥∥z j(t)
∥∥

2

]

≤ 2φd
(
‖ei(t)‖Pi

)∥∥BT
i Piei(t)

∥∥
2

[
α
∗
i

NA

∑
j=1

∥∥x j(t)
∥∥

2 +β
∗
i

NP

∑
j=1

(
ξ1 j +ξ2 jδ

∗
j

NA

∑
k=1
‖xk(t)‖2

)]

≤ 2φd
(
‖ei(t)‖Pi

)∥∥BT
i Piei(t)

∥∥
2

[
β
∗
i NPmax j

{
ξ1 j
}
+ξ

∗
2i

NA

∑
j=1

∥∥x j(t)
∥∥

2

]

≤ 2φd
(
‖ei(t)‖Pi

)∥∥BT
i Piei(t)

∥∥
2

[
β
∗
i NPmax j

{
ξ1 j
}
+ξ

∗
2i

NA

∑
j=1

(∥∥e j(t)
∥∥

2 +
∥∥xr j(t)

∥∥
2

)]

≤ 2φd
(
‖ei(t)‖Pi

)∥∥BT
i Piei(t)

∥∥
2

[
β
∗
i NPmax j

{
ξ1 j
}
+ξ

∗
2iNAmaxi {xri}+ξ

∗
2i

NA

∑
j=1

∥∥e j(t)
∥∥

2

]

= 2φd
(
‖ei(t)‖Pi

)∥∥BT
i Piei(t)

∥∥
2 ξ̄i +φd

(
‖ei(t)‖Pi

)
ξ
∗
2i

NA

∑
j=1

2
∥∥BT

i Piei
∥∥

2

∥∥e j(t)
∥∥

2 . (7.36)

In addition, using Young’s inequality [14] for the second term in (7.36) gives

φd
(
‖ei(t)‖Pi

)
ξ
∗
2i

NA

∑
j=1

2
∥∥BT

i Piei(t)
∥∥

2

∥∥e j(t)
∥∥

2

≤ φd
(
‖ei(t)‖Pi

)
ξ
∗
2i

NA

∑
j=1

(
li
∥∥BT

i Piei(t)
∥∥2

2 +
1
li

∥∥e j(t)
∥∥2

2

)

= φd
(
‖ei(t)‖Pi

)
ξ
∗
2iNAli

∥∥BT
i Piei(t)

∥∥2
2 +

φd
(
‖ei(t)‖Pi

)
ξ ∗2i

li

NA

∑
j=1

∥∥e j(t)
∥∥2

2 . (7.37)
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Now, using (7.36) with (7.37) in (7.35) yields

V̇i
(
ei(t),W̃i(t), ψ̃i(t), θ̃i(t)

)
≤−φd

(
‖ei(t)‖Pi

)
λmin(Ri)‖ei(t)‖2

2 +2φd
(
‖ei(t)‖Pi

)∥∥BT
i Piei(t)

∥∥
2 ξ̄i

+φd
(
‖ei(t)‖Pi

)
ξ
∗
2iNAli

∥∥BT
i Piei(t)

∥∥2
2 +

φd
(
‖ei(t)‖Pi

)
ξ ∗2i

li

NA

∑
j=1

∥∥e j(t)
∥∥2

2

−2ψ̂i(t)φd
(
‖ei(t)‖Pi

)
eT

i (t)PiBiλmin(Λi)tanh
(
φd
(
‖ei(t)‖Pi

)
eT

i (t)PiBi
)

−2θ̂i(t)φd
(
‖ei(t)‖Pi

)
λmin(Λi)

∥∥BT
i Piei(t)

∥∥2
2 +2

(
µ
−1
i ψ̃i(t) ˙̂ψi(t)+η

−1
i θ̃i(t)

˙̂
θi(t)

)
λmin(Λi)

=−φd
(
‖ei(t)‖Pi

)
λmin(Ri)‖ei(t)‖2

2 +
φd
(
‖ei(t)‖Pi

)
ξ ∗2i

li

NA

∑
j=1

∥∥e j(t)
∥∥2

2

+2λmin(Λi)ψi

[∥∥φd
(
‖ei(t)‖Pi

)
BT

i Piei(t)
∥∥

2−φd
(
‖ei(t)‖Pi

)
eT

i (t)PiBitanh
(
φd
(
‖ei(t)‖Pi

)
·eT

i (t)PiBi
)]

+2µ
−1
i ψ̃i

[ ˙̂ψi(t)−µiφd
(
‖ei(t)‖Pi

)
eT

i PiBitanh
(
φd
(
‖ei(t)‖Pi

)
eT

i PiBi
)]

λmin(Λi)

+2η
−1
i θ̃i

[
˙̂
θi(t)−ηiφd

(
‖ei(t)‖Pi

)∥∥BT
i PieT

i (t)
∥∥2

2

]
λmin(Λi). (7.38)

Owing to the nature of using the tangent hyperbolic function,

∥∥φd
(
‖ei(t)‖Pi

)
BT

i Piei(t)
∥∥

2−φd
(
‖ei(t)‖Pi

)
eT

i (t)PiBitanh
(
φd
(
‖ei(t)‖Pi

)
eT

i (t)PiBi
)
≤ Li, (7.39)

holds [158], where Li = 0.2785 for all i = 1,2, . . . ,NA. Using this along with (7.22) and (7.23) in (7.38)

yields

V̇i
(
ei(t),W̃i(t), ψ̃i(t), θ̃i(t)

)
≤−φd

(
‖ei(t)‖Pi

)
λmin(Ri)‖ei(t)‖2

2 +
φd
(
‖ei(t)‖Pi

)
ξ ∗2i

li

NA

∑
j=1

∥∥e j(t)
∥∥2

2 +2λmin(Λi)ψiLi. (7.40)

Consider the aggregated energy function for the active modules V(·) = ∑
NA
i=1Vi(·), which results in

V̇(·) ≤
NA

∑
i=1

[
−φd

(
‖ei(t)‖Pi

)
λmin(Ri)‖ei(t)‖2

2 +
φd
(
‖ei(t)‖Pi

)
ξ ∗2i

li

NA

∑
j=1

∥∥e j(t)
∥∥2

2 +2λmin(Λi)ψiLi

]
= −

NA

∑
i=1

φd
(
‖ei(t)‖Pi

)[
λmin(Ri)−

NA

∑
j=1

ξ ∗2 j

l j

]
‖ei(t)‖2

2 +
NA

∑
i=1

2λmin(Λi)ψiLi. (7.41)
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Using the inequality λmin(Pi)‖ei(t)‖2
2 ≤ eT

i (t)Piei(t)≤ λmax(Pi)‖ei(t)‖2
2, one can write (7.41) as

V̇(·) ≤ −
NA

∑
i=1

φd
(
‖ei(t)‖Pi

) 1
λmax(Pi)

[
λmin(Ri)−

NA

∑
j=1

ξ ∗2 j

l j

]
eT

i (t)Piei(t)+
NA

∑
i=1

2λmin(Λi)ψiLi

= −
NA

∑
i=1

(
1
2

ρiφ
(
‖ei(t)‖Pi

)
+ρi

(
φd
(
‖ei(t)‖Pi

)
· eT

i (t)Piei(t)−
1
2

φ
(
‖ei(t)‖Pi

)))
+

NA

∑
i=1

2λmin(Λi)ψiLi (7.42)

where ρi =
1

λmax(Pi)

[
λmin(Ri)−∑

NA
j=1

ξ ∗2 j
l j

]
. Noting from Definition 7.3.3 that φd

(
‖ei(t)‖Pi

)
eT

i (t)Piei(t)−
1
2 φ
(
‖ei(t)‖Pi

)
> 0, (7.42) can be written as

V̇(·) ≤ −
NA

∑
i=1

1
2

ρi

(
φ
(
‖ei(t)‖Pi

)
+ γ
−1
i tr

(
W̃i(t)Λ

1
2
i

)T(
W̃i(t)Λ

1
2
i

)
+
(
µ
−1
i ψ̃

2
i (t)+η

−1
i θ̃

2
i (t)

)
λmin(Λi)

)
+

NA

∑
i=1

(
1
2

ρi

(
γ
−1
i tr

(
W̃i(t)Λ

1
2
i

)T(
W̃i(t)Λ

1
2
i

)
+
(
µ
−1
i ψ̃

2
i (t)+η

−1
i θ̃

2
i (t)

)
λmin(Λi)

)

+2λmin(Λi)ψiLi

)
≤ −aminV (·)+bmax, (7.43)

where amin = mini
{1

2 ρi
}

and

bmax = NAmaxi

{(
1
2

ρi
(
γ
−1
i ω

∗2
i λmax(Λi)+

(
µ
−1
i ψ

∗2
i +η

−1
i θ

∗2
i
)

λmin(Λi)
)
+2λmin(Λi)ψiLi

)}
, (7.44)

with
∥∥W̃i(t)

∥∥
F≤ω∗i , |ψ̃i(t)| ≤ψ∗i , and

∣∣θ̃i(t)
∣∣≤ θ ∗i . From (7.43), V

(
e(t),W̃ (t), ψ̃(t), θ̃(t)

)
is upper bounded

by Vmax , max
{
V0,

bmax
amin

}
, where V0 , NAmaxiV

(
ei(0),W̃i(0), ψ̃i(0), θ̃i(0)

)
. Now from V(·) = ∑

NA
i=1Vi(·),

it follows that Vi
(
ei(t),W̃i(t), ψ̃i(t), θ̃i(t)

)
≤ Vmax, i = 1,2, . . . ,NA, resulting in φ

(
‖ei(t)‖Pi

)
≤ Vmax, i =

1,2, . . . ,NA, and hence, the strict performance bound on the active modules given by (7.29) is now im-

mediate. Furthermore, Vi
(
ei(t),W̃i(t), ψ̃i(t), θ̃i(t)

)
≤ Vmax, i = 1,2, . . . ,NA, implies the solution of the

closed-loop active module dynamics,
(
ei(t),W̃i(t), ψ̃i(t), θ̃i(t)

)
, is bounded. As a direct consequence of

the boundedness of ei(t), i = 1,2, . . . ,NA, it follows that xi(t), i = 1,2, . . . ,NA, is also bounded. From

Assumption 7.2.2, Fi, i = 1,2, . . . ,NP, is Hurwitz, and hence, zi(t), i = 1,2, . . . ,NP, is bounded. The

boundedness of the overall closed-loop large-scale active-passive modular system G is now immediate. �
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Remark 7.4.1 From the solution of the inequality (7.43) given by

V(·)≤ V0e−amint +
bmax

amin

(
1− e−amint) , (7.45)

it follows that limt→∞V(·) ≤ bmax
amin

. This upper bound on the trajectories of V(·) as t → ∞, can be made

small by increasing the adaptation gains γi, µi, and ηi. In addition, it should be noted that the one can

either judiciously choose Ri in the Lyapunov equation (7.24) to obtain a different solution Pi or use an

optimization process [159] to design Pi to improve the enforcing of the performance bound ‖ei(t)‖< εi.

Remark 7.4.2 As a result of the strict performance bound enforced on the active module GAi error given

by (7.29), it follows as in [74] that upper bounds can be enforced on the state signal xi(t) and the control

signal ui(t). For this purpose, it follows from ei(t), xi(t)− xri(t) that

‖xi(t)‖2 = ‖ei(t)+ xri(t)‖2

≤ ‖ei(t)‖2 +‖xri(t)‖2

≤ εi√
λmin(Pi)

+ x∗ri, (7.46)

and from (7.20) that

‖ui(t)‖2 =
∥∥−Ŵ T

i (t)σi(xi(t),ci(t))− ψ̂i(t)tanh(φd
(
‖ei(t)‖Pi

)
eT

i (t)PiBi)− θ̂i(t)BT
i Piei(t)

∥∥
2

≤ ω
∗ ‖σi(xi(t),ci(t))‖2 +ψiρ1i +θiρ2i

∥∥BT
i Pi
∥∥

F ‖ei(t)‖2 , (7.47)

where
∥∥Ŵi(t)

∥∥
F ≤ ω∗ holds owing to the projection bounds on each element, with ω∗ ∈ R+. Since σi(xi(t),

ci(t)) =
[
xT

i (t), cT
i (t)

]T, it follows that ‖σi(xi(t),ci(t))‖2
2 = ‖xi(t)‖2

2 + ‖ci(t)‖2
2 ≤

(
‖xi(t)‖2 + ‖ci(t)‖2

)2;

hence, ‖σi(xi(t),ci(t))‖2 ≤ ‖xi(t)‖2 +‖ci(t)‖2, such that the bound on ui(t) can be further given as

‖ui(t)‖2 ≤ ω
∗(‖xi(t)‖2 +‖ci(t)‖2)+ψiρ1i +θiρ2i

∥∥BT
i Pi
∥∥

F
εi√

λmin(Pi)

≤ ω
∗
(

εi√
λmin(Pi)

+ x∗ri +‖ci(t)‖2

)
+ψiρ1i +θiρ2i

∥∥BT
i Pi
∥∥

F
εi√

λmin(Pi)

=
εi√

λmin(Pi)

(
ω
∗+θiρ2i

∥∥BT
i Pi
∥∥

F

)
+ω

∗ (x∗ri +‖ci(t)‖2)+ψiρ1i. (7.48)
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Now, if one is interested in applying a state and/or control dependent function such as a cost function (e.g.,

to minimize drag as in [151, 152]), the corresponding function is bounded owing to the performance bound

enforced by the proposed control design. As an example, consider the cost function for each active module

i given by

Ji =
1
2

(
xT

i (t)Qixi(t)+uT
i (t)Riui(t)

)
. (7.49)

This can be bounded using (7.46) and (7.48) as follows

Ji ≤
1
2

(
λmin(Qi)‖xi(t)‖2 +λmin(Ri)‖ui(t)‖2

)
≤ 1

2

(
λmin(Qi)

(
εi√

λmin(Pi)
+ x∗ri

)
+λmin(Ri)

(
εi√

λmin(Pi)

(
ω
∗+θiρ2i

∥∥BT
i Pi
∥∥

F

)
+ω

∗ (x∗ri +‖ci(t)‖2)+ψiρ1i

))
. (7.50)

It is then possible to reduce the bound on the cost function to some extent by the selection of the a-priori,

user-defined performance bound εi.

Remark 7.4.3 In the case one is not interested in command following, but instead the simpler stabilization

case is considered, the control architecture given in Section 7.3 can be modified to stabilize the large-scale

modular system given by (7.1) and (7.2). For this purpose, the control architecture given by (7.20), (7.21),

(7.22), (7.23) is redefined as

ui(t) = −Ŵ T
i (t)xi(t)− ψ̂i(t)tanh(φd

(
‖xi(t)‖Pi

)
xT

i (t)PiBi)− θ̂i(t)BT
i Pixi(t)− θ̂i(t)BT

i Pixi(t), (7.51)

˙̂Wi(t) = γiProjm
[
Ŵi(t), φd

(
‖xi(t)‖Pi

)
xi(t)xT

i (t)PiBi
]
, (7.52)

˙̂ψi(t) = µiProj
[
ψ̂i(t), φd

(
‖xi(t)‖Pi

)
xT

i (t)PiBitanh
(
φd
(
‖xi(t)‖Pi

)
xT

i (t)PiBi
)]
, (7.53)

˙̂
θi(t) = ηiProj

[
θ̂i(t), φd

(
‖xi(t)‖Pi

)∥∥BT
i Pixi(t)

∥∥2
2

]
, (7.54)

with Ŵi(0) = Ŵi0, ψ̂i(0) = ψ̂i0 ∈ R+, and θ̂i(0) = θ̂i0 ∈ R+. Then, by considering the energy function

Vi
(
xi(t),W̃i(t), ψ̃i(t), θ̃i(t)

)
= φ

(
‖xi(t)‖Pi

)
+ γ
−1
i tr

(
W̃i(t)Λ

1
2
i

)T(
W̃i(t)Λ

1
2
i

)
+
(
µ
−1
i ψ̃

2
i (t)+η

−1
i θ̃

2
i (t)

)
λmin(Λi), (7.55)
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and following similar steps as the proof of Theorem 7.4.1, one can conclude that the solution
(
xi(t),W̃i(t),

ψ̃i(t), θ̃i(t),zi(t)
)

of the closed-loop dynamical large-scale modular system G is bounded and the active

module states strictly satisfy the given user-defined worst-case performance bound given by ‖xi(t)‖Pi
< εi,

t ∈ R+.

7.5 Illustrative Numerical Example

In this section, we present a numerical example to illustrate the efficacy of the proposed adaptive

decentralized control architecture. For this purpose, consider the uncertain dynamical large-scale system

depicted in Figure 7.3, which has four active modules and one passive module.

Figure 7.3: An interconnected large-scale system consisting of five carts.

The active modules have the following dynamics


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0
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Mil

0

1
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
(Λiui(t)+αi(x(t))) , (7.56)


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m0g
Mi

0 − (k1+k2)
Mi

− 2b
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
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θi(t)

θ̇i(t)

xi(t)

ẋi(t)


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0

− 1
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0

1
Mi


(Λiui(t)+αi(x(t))+βi(z(t))) , (7.57)

where (7.56) is for active carts i = 1,4 and (7.57) is for active carts i = 2,3. The unknown physical

interconnections between active modules are given by
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α1(x(t)) = k1x2(t)+bẋ2(t),

α2(x(t)) = k1x1(t)+bẋ1(t),

α3(x(t)) = k1x4(t)+bẋ4(t),

α4(x(t)) = k1x3(t)+bẋ3(t),

and the unknown physical interconnections with the passive module are given by

βi(x(t)) = k2z1(t)+bż1(t), i = 2,3.

In addition, the passive module has the following dynamics

ż1(t) =

 0 1

−2k2
M −2b

M

z1(t)+

 0

1
M

δ (x(t)). (7.58)

The unknown physical interconnection with the active modules is given by

δ (x(t)) = k2 (x2(t)+ x3(t))+b(ẋ2(t)+ ẋ3(t)) .

For this example, all the cart masses are known as M1 = M4 = 1.0 (kg), M2 = M3 = 3.0 (kg), and M = 5.0

(kg), each pendulum has a length l = 2 (m) with a mass m= 0.5 (kg), and g= 9.81 (m/s2) is the gravitational

constant. In addition, the spring constant and damper coefficient are unknown but for simulation purposes we

let k1 = 1.0 (N ·m−1), k2 = 2.0 (N ·m−1), and b = 1.0 (N · sec ·m−1), and the unknown control effectiveness

is set as Λi = 0.5, i = 1,2,3,4.

For this example, we set the command signal for each active module to follow as ci = sin(ωit),

where ωi = 0.1, for i = 1,2,3,4, and we set Ri = I2 for the proposed adaptive decentralized control for the

active modules. Linear quadratic regulation theory [91] is used to design the nominal feedback control gain

K1i, for i = 1,2,3,4. Through tuning, we select the weighting matrices Q = diag[0.1, 1, 10, 5] to penalize

the states and R = 1 to penalize the control input such that we obtain K1i =

[
−69. −29.0 −4.3 −7.3

]
,

for i = 1,4, and K1i =

[
−120.8 −52.3 −7.4 −10.1

]
, for i = 2,3, to design the Hurwitz reference

models Ari, for i = 1,2,3,4. A pre-filter design is used such that a desired cart position xi(t) is followed.

For this purpose, using C = [0,0,1,0], the gain K2i is calculated as K2i = −(C(Ai−BiK1i)
−1Bi)

−1 = −3.3,
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for i = 1,4 and K2i = −4.4, for i = 2,3. Finally, using the rectangular projection operator, bounds on the

uncertainty are set element-wise to be 5% greater than each uncertain element of Wi =
[
Λ
−1
i K1i, −Λ

−1
i K2i

]T
for i = 1,2,3,4, and we set 0 ≤ ψ̂i(t) ≤ 100 and 0 ≤ θ̂i(t) ≤ 100, for i = 1,2,3,4. The learning gains are

set as γi = 1, for i = 1,2,3,4, and the gains for the robustifying terms are set as µi = 10 and ηi = 10, for

i = 1,2,3,4.

Figure 7.4: Position tracking and pendulum stabilization of the proposed adaptive decentralized controller
with the performance bound εi = 1.0.

Figures 7.4–7.7 show the performance of the interconnected cart system for different performance

bounds εi. Specifically, a performance bound of εi = 1.0 is used in Figures 7.4 and 7.5 and then reduced to

εi = 0.5 in Figures 7.6 and 7.7. It can be seen in Figures 7.4 and 7.6 that all the active modules approximately

follow the reference model trajectory and passive module remains bounded, where the performance is

improved from Figure 7.4 to Figure 7.6 due to the more strictly enforced performance bound εi. Figures 7.5

and 7.7 show the change in the error dependent learning gain φd
(
‖ei(t)‖Pi

)
to prevent the violation of εi as

the active modules follow the reference model trajectory. This is consistent with the presented theory in that

the violation of εi is prevented as the error dependent learning gain increases.
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Figure 7.5: Proposed adaptive decentralized control performance, error dependent learning gain, and
weighted norm of the active module system with the performance bound εi = 1.0.

Figure 7.6: Position tracking and pendulum stabilization of the proposed adaptive decentralized controller
with the performance bound εi = 0.5.
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Figure 7.7: Proposed adaptive decentralized control performance, error dependent learning gain, and
weighted norm of the active module system with the performance bound εi = 0.5.

To investigate the effect of the passive module dynamics on the ability of the active modules to

be properly controlled, while enforcing a performance bound of εi = 0.5, the mass of the passive cart is

changed. In particular, Figures 7.8 and 7.9 show the proposed decentralized control performance when

the mass of the passive module is decreased to M = 0.1 (kg), whereas in Figures 7.10 and 7.11, the mass is

increased to M = 25 (kg). As expected by intuition, when the mass of the passive module is small, its motion

is dominantly effected by the movement of the active modules next to it. This can be seen from Figure 7.8

in which the passive module position trajectory closely follows the trajectories of the active modules. On

the other hand, when the mass of the passive module is large as in Figure 7.10, the motion of the passive

module dominates that of the active modules. This is evident from the periodic-like trajectory of the active

modules as they closely track the reference model trajectory, but are effected by the movement of the passive

module. Note that in either case in which the passive module effects the active modules, the performance

bound εi = 0.5 is not violated by the active modules.
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Figure 7.8: Position tracking and pendulum stabilization of the proposed adaptive decentralized controller
with the mass of the passive module decreased to M = 0.1 (kg).

Figure 7.9: Proposed adaptive decentralized control performance, error dependent learning gain, and
weighted norm of the active module system with the mass of the passive module decreased to M = 0.1
(kg).
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Figure 7.10: Position tracking and pendulum stabilization of the proposed adaptive decentralized controller
with the mass of the passive module increased to M = 25 (kg).

Figure 7.11: Proposed adaptive decentralized control performance, error dependent learning gain, and
weighted norm of the active module system with the mass of the passive module increased to M = 25
(kg).
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7.6 Conclusion

In the presence of unknown physical interconnections between active and passive modules and

module-level system uncertainties, the design and implementation of decentralized architectures for the con-

trol of complex large-scale systems is a nontrivial control engineering task. Motivated from this standpoint,

we proposed a new decentralized command following architecture for unknown large-scale active-passive

modular systems and showed stability of the overall closed-loop system using a set-theoretic adaptive

approach predicated on restricted potential functions. The key feature of our methodology was to restrict

the system error trajectories such that they are guaranteed to stay within user-defined limits even in the

presence of the unmodeled dynamics resulting from the passive modules. An illustrative numerical example

demonstrated the efficacy of the proposed framework. Finally, while the results of this paper consider fixed

performance bounds for each active module, this can be generalized to the case in which the performance

bound is time-varying (i.e., ε(t)) by using recent results [160] proposed for sole systems. This extension

allows for the initial tracking error e(0) to be large and then converge to a small region defined by ε(t).
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CHAPTER 8: ON ADAPTIVE CONTROL OF UNACTUATED DYNAMICAL SYSTEMS

THROUGH INTERCONNECTIONS WITH STABILITY AND PERFORMANCE

GUARANTEES1,2

This paper studies control and performance enforcement for a class of uncertain dynamical systems

consisting of actuated and unactuated portions that are physically interconnected to each other (Figure 8.1).

Performance guarantees are enforced on not only the actuated portion of the interconnected dynamics but

also the unactuated portion via the proposed adaptive control approach, where this is accomplished through

the physical interconnection with the actuated portion of the dynamics. Specifically, the proposed approach

stabilizes the overall interconnected system in the presence of unknown physical interconnections as well

as system uncertainties. For enforcing performance guarantees, a set-theoretic model reference adaptive

control approach is used to restrict the respective system error trajectories of the actuated and unactuated

dynamics inside a-priori, user-defined compact sets. In addition, the proposed approach utilizes linear matrix

inequalities to verify stability of appropriate control parameters as well as the allowable system uncertainties

and unknown physical interconnections. Finally, the efficacy of the proposed approach is demonstrated with

an example.

8.1 Introduction

In this paper, we study a class of dynamical systems that is characterized by two (or more) sets

of uncertain dynamics with an unknown physical interconnection between these dynamics (Figure 8.1). In

particular, only a portion of the resulting interconnected dynamics is actuated (G1 in Figure 8.1) while the

other portion is unactuated (G2 in Figure 8.1). A motivating example for the considered class of dynamical

systems includes slung-load systems (see, for example, [161–168]), where a helicopter is actuated with

a physical connection to the load that is unactuated. In the above work, the dynamics of the load affect

the stability and achievable performance of the overall slung-load system, where the objective is then is to

1This chapter has been submitted to the IEEE Conference on Decision and Control.
2This chapter is a by-product of consulting work. Permission is included in Appendix B.
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Figure 8.1: Block diagram representation of the open-loop interconnected uncertain dynamical system setup
considered in this paper with u(t), z(t), and x(t) respectively denoting the control signal applied to G1, the
state vector of G1, and the state vector of G2.

design control laws for load damping such that the slung-load system remains stable and has some degree of

desirable performance. However, no performance guarantees are made for the load itself, which is desirable

in safety-critical scenarios such as precision load placement or navigation through densely obstructed areas.

The system behavior discussed above also falls under a class of underactuated mechanical systems,

which are defined as systems with more degrees of freedom than there are actuators. A vast amount of

literature already exists considering the control of underactuated mechanical systems (see, for example,

[169–181], and references therein as well as [182–184] that use the terminology of super-articulated me-

chanical systems). In addition to the motivating example of slung-load systems, underactuated mechanical

systems include unactuated fuel slosh dynamics in spacecraft [175, 176], robot manipulators including

flexible joints and flexible links [172, 174, 177, 179, 182, 185], multibody mobile robots (i.e., car with

trailer) [169, 186], inverted pendulums on carts [182, 187], bipedal walking [180, 181], and crane systems

[188, 189]. Different control approaches used in these works include feedback linearization [174–176, 179],

open-loop vibrational control of unactuated joints [177], and backstepping [182, 185, 186]. To handle

uncertainties, several adaptive control methods have been studied [187, 189–194].

The authors of [190] consider the fact that uncertainties in underactuated systems do not satisfy

a linear-in-parameter property. By using an extended dynamic model with a normal form augmentation,

the parameter linearity is recovered such that a parameter adaptive control law can then be implemented

to suppress the effect of the system uncertainties. While an important step, only stabilization of the en-

tire underactuated system is considered without any consideration for the performance of the unactuated

dynamics. Similarly, [192] proposes an adaptive control for underactuated systems that avoids the linear-in-

parameter property by not using detailed model information, but instead using estimated model parameters.

The resulting control allows for the actuated degrees of freedom to track desired trajectories, while the

unactuated dynamics are considered as unmodeled dynamics. It is also shown in [192] that performance

bounds can be computed and improved by increasing adaptation rate; however, no guarantees can be made to
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enforce this without judiciously choosing the adaptation rate. Performance bounds are also only considered

for the actuated degrees of freedom.

The authors in [191] design an adaptive variable structure set-point control law to drive all states

of an underactuated robot system to desired values in the presence of parameterized uncertainties, where

it is discussed that system performance can be improved by proper selection of controller gains. In [187],

the authors propose an adaptive control law using fuzzy logic for an inverted pendulum set-up. Similarly,

an adaptive fuzzy logic based control law is proposed in [193] utilizing a hierarchical structure of sliding

surfaces to drive tracking errors to zero. Furthermore, performance bounds on the tracking error are

computed (but not enforced). The authors of [194] propose a combined adaptive supervisory control along

with a Lyapunov-based tracking control law to obtain a uniform ultimate bound result on the tracking error,

where this bound can be made arbitrarily small through selection of the control parameters. In [188] and an

adaptive extension [189], a form of performance guarantees are considered. In particular, both consider an

overhead crane system where a motion planning method is used to keep the swing angle of the load attached

to the crane within certain constraints; however, they only consider stabilization of the attached load where

our approach allows for command following of the unactuated dynamics (i.e., load in the sense of the crane

system). Moreover, our approach is proposed here in a more general form such that it could be applied to

other underactuated systems, while [188, 189] are specific for the crane system considered.

The contribution of this paper is an adaptive control architecture for uncertain dynamical systems

subject to interconnected actuated and unactuated dynamics with performance guarantees enforced to both

dynamics. The control and performance enforcement of the unactuated dynamics is accomplished through

the physical interconnection with the actuated dynamics, where the proposed control is applied to stabilize

the overall interconnected system in the presence of unknown physical interconnections as well as uncer-

tainties in both the actuated and unactuated dynamics. The performance guarantees are enforced using a

set-theoretic model reference adaptive control approach3 such that the respective system error trajectories of

the actuated and unactuated dynamics are restricted to stay inside user-defined compact sets. In addition, the

proposed approach uses linear matrix inequalities (LMIs) to verify stability of appropriate control parameters

as well as the allowable system uncertainties and unknown physical interconnections. An example is

included to demonstrate the efficacy of the proposed approach.

3Note that a set-theoretic adaptive control architecture is utilized in the prior work of the authors [72, 74, 134, 140, 195];
however, they are not applicable as-they-are to the problem considered in this paper (see Section 8.2).
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8.2 Problem Formulation

We start with introducing the class of interconnected uncertain dynamical systems considered in

this paper4

ẋ(t) = Ax(t)+B[Jz(t)+W T
u x(t)], x(0) = x0, (8.1)

ż(t) = Fz(t)+G[u(t)+Hx(t)+W T
a z(t)], z(0) = z0, (8.2)

where (8.1) is the unactuated portion of the interconnected system and (8.2) is the actuated portion. In

(8.1) and (8.2), x(t) ∈ Rn is the state vector of the unactuated dynamics available for feedback z(t) ∈ Rp

is the state vector of the actuated dynamics available for feedback, and u(t) ∈ Rq is the control signal

applied to the actuated dynamics. In addition, A ∈ Rn×n and B ∈ Rn×m are a known system matrix and a

known input matrix, respectively, for the unactuated dynamics such that the pair (A,B) is controllable, and

F ∈ Rp×p and G ∈ Rp×q are a known system matrix and a known control input matrix, respectively, for

the actuated dynamics such that the pair (F,G) is controllable. Furthermore, Wu ∈ Rn×m and Wa ∈ Rp×q are

unknown weight matrices respectively representing uncertainty in the unactuated and actuated dynamics, J ∈

Rm×p represents the effect on the unactuated dynamics from the unknown physical interconnection with the

actuated dynamics, and H ∈Rq×n represents the effect on the actuated dynamics from the unknown physical

interconnection with the unactuated dynamics, where we consider these unknown physical interconnections

to be parameterized as

H = H0 +H∆, (8.3)

J = J0 + J∆, (8.4)

with H0 ∈ Rq×n and J0 ∈ Rm×p consisting of known coefficients of the physical interconnection and H∆ ∈

Rq×n and J∆ ∈ Rm×p consisting of the unknown coefficients of the physical interconnection.

Remark 8.2.1 Under nominal conditions (i.e., J∆ = 0, H∆ = 0, Wu = 0, Wa = 0), (8.1) and (8.2) reduce to

ẋ(t) = Ax(t)+BJ0z(t), (8.5)

ż(t) = Fz(t)+G[u(t)+H0x(t)]. (8.6)

In this form, a possible selection of the control signal is u(t) =−K1z(t)+K2u1(t)−H0x(t), where K1 ∈Rq×p

is designed such that F−GK1 is Hurwitz, K2 ∈ Rq×m, and u1(t) ∈ Rm is an additional control signal to be
4To elucidate the interconnected uncertain dynamical system setup presented in (8.1) and (8.2), consider the open-loop block

diagram in Figure 8.1. In this block diagram, G1 represents the actuated dynamics receiving a control signal u(t) as well as the
unactuated state signal x(t) through physical interconnection with G2, where G2 represents the unactuated dynamics receiving the
actuated state signal z(t) through the physical interconnection.
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applied to the unactuated dynamics. With this control signal, one can write (8.5) and (8.6) equivalently as

ẋ(t) = Ax(t)+Bv(t), (8.7)

ż(t) = (F−GK1)z(t)+GK2u1(t), (8.8)

v(t) = J0z(t). (8.9)

By choosing (the pre-filter gain) K2 as −J0(F −GK1)
−1GK2 = I, one can design the remaining control

signal u1(t), for example, to stabilize (8.7). To see this, consider an equivalent form of (8.7) given by

ẋ(t) = Ax(t)+Bu1(t)+B(v(t)−u1(t)). (8.10)

If K1 is selected such that the system in (8.8) and (8.9) is sufficiently fast and since−J0(F−GK1)
−1GK2 = I,

then one would expect u1(t) = −L1x(t), L1 ∈ Rm×n, with A−BL1 being Hurwitz to stabilize (8.10), where

in this case limt→∞(v(t)−u1(t)) = 0 can be concluded5.

Remark 8.2.2 The nominal case discussed in Remark 8.2.1 simplifies the problem such that one can also

augment the dynamics in (8.7)-(8.9) and write them as

ẋ(t)

ż(t)

 =

A BJ0

0 F−GK1


x(t)

z(t)

+
 0

GK2

u1(t). (8.11)

As already discussed, this is an easier problem to solve using linear control theory. However, due to the

the presence of uncertainties in both the actuated and unactuated dynamics and the unknown physical

interconnections in the considered dynamics given by (8.1) and (8.2), the control problem becomes more

complex. To see this, we similarly augment the dynamics in (8.1) and (8.2) yielding

ẋ(t)

ż(t)

 =

 A BJ0

GH0 F


x(t)

z(t)

+
0

G

(u(t)+H∆x(t)+W T
a z(t))+

B

0

(J∆z(t)+W T
u x(t)). (8.12)

From (8.12), the challenge of this “augment the dynamics” approach is that the uncertainty in the term

“J∆z(t)+W T
u x(t)” is unmatched, meaning that there is no access to the control channel to suppress this

uncertainty with standard model reference adaptive control architectures. While there are some approaches

5We refer to Section 8.4 and specifically Remark 8.4.1 for the analytical condition predicated on LMIs to verify overall closed-
loop system stability based on the aforementioned design gain.
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to handle unmatched uncertainties in the context of model reference adaptive control (see, for example,

[5, 7, 18, 82, 196]), they involve additional complexity; hence, they are not adopted in the context of this

paper.

Remark 8.2.3 From Remark 8.2.1, the dynamics given by (8.7)-(8.9) can also be interpreted as an “ac-

tuator dynamics” problem, where (8.7) represents the system dynamics and (8.8) and (8.9) represent the

actuator dynamics. If there are uncertainties in the system dynamics (i.e., W T
u x(t) 6= 0), this becomes a non-

trivial problem for model reference adaptive control since the presence of the actuator dynamics prevent the

direct suppression of the uncertainties through the control channel (unmatched uncertainties as discussed

in Remark 8.2.2). On this subject, a practical approach referred to as hedging is proposed by the authors

of [30–33] to allow for correct adaptation in the presence of actuator dynamics. Furthermore, the work in

[95, 101–105, 114, 118] propose significant contributions to the hedging approach and make use of LMIs to

provide sufficient stability conditions. While these approaches are promising for the application of adaptive

control to uncertain dynamical systems with actuator dynamics, the interconnected uncertain dynamical

system considered in this paper includes additional complexity owing to the uncertainties in the actuated

dynamics and unknown physical interconnections that are not considered in [30–33, 95, 101–105, 114, 118].

The adaptive control problem considered in this paper is now stated as follows: Consider the

interconnected uncertain dynamical system given by (8.1) and (8.2). Design a control signal for the actuated

dynamics given by (8.2) such that a) trajectories of the actuated dynamics follow the trajectories of a desired

reference model, b) the trajectories of the unactuated dynamics given by (8.1) follow the trajectories of a

desired reference model, c) the respective system error trajectories of the actuated and unactuated dynamics

are restricted to a-priori, user-defined compact sets enforcing performance guarantees. For this purpose,

the next section introduces the proposed set-theoretic adaptive control architecture.

8.3 Adaptive Control for Unactuated Dynamics Through Interconnections

In this section, we propose a set-theoretic adaptive control architecture for the interconnected uncer-

tain dynamical system presented in Section 8.2 such that command following of the unactuated dynamics is

achieved. To begin with, we provide the following necessary definition [74].

Definition 8.3.1 Let ‖y‖M =
√

yTMy be a weighted Euclidean norm, where y ∈ Rs is a real column vector

and M ∈ Rs×s
+ . We define φ(‖y‖M), φ : Rs → R, to be a restricted potential function (barrier Lyapnunov
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function) defined on the setDε , {y : ‖y‖M ∈ [0,ε)} with ε ∈R+ being an a priori, user-defined constant, if

the following statements hold: i) If ‖y‖M = 0, then φ(‖y‖M)= 0. ii) If y∈Dε and ‖y‖M 6= 0, then φ(‖y‖M)>

0. iii) If ‖y‖M→ ε , then φ(‖y‖M)→ ∞. iv) φ(‖y‖M) is continuously differentiable on Dε . v) If y ∈ Dε , then

φd(‖y‖M)> 0, where φd(‖y‖M), dφ(‖y‖M)

d‖y‖2
M

. vi) If y ∈ Dε , then 2φd(‖y‖M)‖y‖2
M−φ(‖y‖M)> 06,7.

Now, consider the interconnected uncertain dynamical system given by (8.1) and (8.2) with (8.3)

and (8.4) as

ẋ(t) = Ax(t)+B[(J0 + J∆)z(t)+W T
u x(t)], (8.13)

ż(t) = Fz(t)+G[u(t)+(H0 +H∆)x(t)+W T
a z(t)]. (8.14)

The remainder of this section is divided into two subsections. In Section 8.3.1, we design the proposed

control law as it applies to the actuated dynamics given by (8.14) and in Section 8.3.2 we address how

the unactuated dynamics given by (8.13) can be controlled by the physical interconnection to the actuated

dynamics.

8.3.1 Control Design for Actuated Dynamics

To control the actuated dynamics in the presence of system uncertainties and unknown physical

interconnections with the unactuated dynamics, consider the adaptive control given by

u(t) = −K1z(t)+K2u1(t)− (H0 + Ĥ∆(t))x(t)−Ŵ T
a (t)z(t), (8.15)

where K1 ∈Rq×p is designed such that Fr , F−GK1 is Hurwitz, K2 ∈Rq×m is designed such that −J0(F−

GK1)
−1GK2 = I, and u1(t) ∈ Rm is an additional control signal to be applied to the unactuated dynamics

which is designed in the next section. In addition, Ĥ∆(t) ∈ Rq×n and Ŵa(t) ∈ Rp×q are the estimates of H∆

and Wa satisfying the respective weight update laws given by

˙̂H∆(t) = αProjm
[
Ĥ∆(t), φd (‖z̃(t)‖S)GTSz̃(t)xT(t)

]
, Ĥ∆(0) = Ĥ∆0, (8.16)

6The last condition vi) is shown in [74] to be necessary when the system uncertainties are time-varying such that a bounded
result is obtained for the closed-loop system stability. While we do not consider the actuated and unactuated system uncertainties
to be time-varying in the theoretical development of this paper, we include this final condition on the restricted potential function
such that our results can be readily extended for the practical case in which the uncertainties are time-varying.

7As considered in [72, 74, 134, 140, 195], a candidate restricted potential function that satisfies all the conditions stated in
Definition 8.3.1 has the form φ(‖y‖M) = ‖y‖2

M/(ε−‖y‖M), y ∈Dε .
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˙̂Wa(t) = γaProjm
[
Ŵa(t), φd (‖z̃(t)‖S)z(t)z̃T(t)SG

]
, Ŵa(0) = Ŵa0, (8.17)

where α ∈R+ and γa ∈R+ are learning rates, φd (‖z̃(t)‖S) can be considered as an error dependent learning

gain, S ∈Rp×p
+ is a solution of the Lyapunov equation 0 = FT

r S+SFr+ I, and z̃(t), z(t)−zr(t) is the system

error of the actuated dynamics with zr(t)∈Rp being the reference state vector satisfying the reference model

dynamics that capture a desired closed-loop dynamical system performance motivated by Remark 8.2.1 and

given by8

żr(t) = Frzr(t)+Gru1(t), zr(0) = zr0, (8.18)

with Gr = GK2 ∈ Rp×m being the reference model input matrix9.

8.3.2 Control Design to Account for Unactuated Dynamics

In this section, the remaining control signal u1(t) is designed to allow for command following of the

unactuated dynamics. It is applied to the actuated dynamics for the purpose of controlling the unactuated

dynamics through the physical interconnection of the two dynamics. To accomplish this, we start by adding

and subtracting the term “Bu1(t)” to unactuated dynamics such that (8.13) can be rewritten as

ẋ(t) = Ax(t)+B[u1(t)+ J∆z(t)+W T
u x(t)]+B[J0z(t)−u1(t)]. (8.19)

Now, let the additional control signal be given by

u1(t) = −L1x(t)+L2c(t)− Ĵ∆(t)z(t)−Ŵ T
u (t)x(t), (8.20)

where L1 ∈ Rm×n is designed such that Ar , A−BL1 is Hurwitz, L2 ∈ Rm×m is a feedforward gain, and

c(t) ∈Rm is a given uniformly continuous bounded command. In addition, Ĵ∆(t) ∈Rm×p and Ŵu(t) ∈Rn×m

are the estimates of J∆ and Wu satisfying the respective weight update laws given by

˙̂J∆(t) = βProjm
[
Ĵ∆(t), φd (‖e(t)‖P)BTPe(t)zT(t)

]
, Ĵ∆(0) = Ĵ∆0, (8.21)

˙̂Wu(t) = γuProjm
[
Ŵu(t), φd (‖e(t)‖P)x(t)eT(t)PB

]
, Ŵu(0) = Ŵu0, (8.22)

8Stability of the considered reference model is addressed in the proof of Theorem 8.4.1 (also see the LMI analysis in Remark
8.4.1).

9In (8.16) and (8.17), a rectangular projection operator is used (see [6, 82] for more details) such that the element-wise projection
bounds

∣∣[Ĥ∆(t)]i j
∣∣≤ Ĥ∆,max,i+( j−1)q, i = 1, ...,q, j = 1, ...,n,

∣∣[Ŵa(t)]i j
∣∣ ≤ Ŵa,max,i+( j−1)p, i = 1, ..., p, j = 1, ...,q, are respectively

satisfied.
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where β ∈R+ and γu ∈R+ are learning rates, φd (‖e(t)‖P) can be considered as an error dependent learning

gain, P∈Rn×n
+ is a solution of the Lyapunov equation 0=AT

r P+PAr+I, and e(t), x(t)−xr(t) is the system

error of the unactuated dynamics with xr(t) ∈ Rn being the reference state vector satisfying the following

reference model dynamics based on the hedging approach [30–33, 95, 101–105, 114, 118],

ẋr(t) = Arxr(t)+Brc(t)+B[J0z(t)−u1(t)], xr(0) = xr0, (8.23)

with Br = BL2 ∈ Rn×m being the reference model input matrix10.

8.4 Stability and Performance Guarantees

We now present the stability analysis and establish performance guarantees of the adaptive control

method proposed in Section 8.3 for the actuated and unactuated dynamics. For this purpose, we first state

the actuated system error dynamics resulting from (8.14), (8.15), and (8.18), as

˙̃z(t) = Frz̃(t)−GH̃∆(t)x(t)−GW̃ T
a (t)z(t)), z̃(0) = z̃0, (8.24)

where H̃∆(t), Ĥ∆(t)−H∆ ∈Rq×n and W̃a(t), Ŵa(t)−Wa ∈Rp×q and the unactuated system error dynamics

resulting from (8.19), (8.20), and (8.23), as

ė(t) = Are(t)−BJ̃∆(t)z(t)−BW̃ T
u (t)x(t), e(0) = e0, (8.25)

where J̃∆(t) , Ĵ∆(t)− J∆ ∈ Rm×p and W̃a(t) , Ŵa(t)−Wa ∈ Rn×m. The following assumption is necessary

for the remaining results in this paper.

Assumption 8.4.1 The matrix

A(Ĵ∆(t),Ŵu(t)) =

 A+BŴ T
u (t) B(J0 + Ĵ∆(t))

−Gr(L1 +Ŵ T
u (t)) Fr−GrĴ∆(t)

 , (8.26)

is quadratically stable11.
10In (8.21) and (8.22), a rectangular projection operator is used such that the element-wise projection bounds

∣∣[Ĵ∆(t)]i j
∣∣≤

Ĵ∆,max,i+( j−1)m, i = 1, ...,m, j = 1, ..., p,
∣∣[Ŵu(t)]i j

∣∣≤ Ŵu,max,i+( j−1)n, i = 1, ...,n, j = 1, ...,m, are respectively satisfied.
11Remark 8.4.1 addresses how this assumption can be satisfied using LMIs.
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Theorem 8.4.1 Consider the interconnected uncertain dynamical system described by (8.1) and (8.2), the

reference models given by (8.18) and (8.23), and the control laws given by (8.15) and (8.20) with the

update laws (8.16), (8.17), (8.21), and (8.22). If ‖z̃0‖S < εz̃ and ‖e0‖P < εe, then under Assumption

8.4.1, the solution
(
z̃(t),e(t), H̃∆(t),W̃a(t), J̃∆(t),W̃u(t)

)
of the closed-loop interconnected dynamical system

is bounded, limt→∞z̃(t) = 0, and limt→∞e(t) = 0. In addition, the actuated and unactuated system errors

strictly satisfy the a-priori given, user-defined performance bounds respectively given by

‖z̃(t)‖S < εz̃, t ∈ R+, (8.27)

‖e(t)‖P < εe, t ∈ R+. (8.28)

Proof. To show boundedness of the closed-loop interconnected dynamical system, consider the

energy function V :Dεz̃×Dεe×Rdim(H̃∆)×Rdim(W̃a)×Rdim(J̃∆)×Rdim(W̃u)→ R+ given by

V
(
z̃,e, H̃∆,W̃a, J̃∆,W̃u

)
= φ (‖z̃‖S)+φ (‖e‖P)+α

−1tr H̃T
∆ H̃∆ + γ

−1
a tr W̃ T

a W̃a

+β
−1tr J̃T

∆ J̃∆ + γ
−1
u tr W̃ T

u W̃u, (8.29)

where Dεz̃ , {z̃(t) : ‖z̃(t)‖P < εz̃} and Dεe , {e(t) : ‖e(t)‖P < εe}, and Rdim(H̃∆), Rdim(W̃a), Rdim(J̃∆), and

Rdim(W̃u) denote the dimensions of H̃∆, W̃a, J̃∆, and W̃u respectively12.

Differentiating (8.29) yields

V̇(z̃(t),e(t), H̃∆(t),W̃a(t), J̃∆(t),W̃u(t))

= 2φd (‖z̃(t)‖S) z̃T(t)S ˙̃z(t)+2φd (‖e(t)‖P)eT(t)Pė(t)+2α
−1tr H̃T

∆ (t)
˙̂H∆(t)

+2γ
−1
a tr W̃ T

a (t)
˙̂Wa(t)+2β

−1tr J̃T
∆ (t)

˙̂J∆(t)+2γ
−1
u tr W̃ T

u (t)
˙̂Wu(t)

=−φd (‖z̃(t)‖S)‖z̃(t)‖2−φd (‖e(t)‖P)‖e(t)‖2−2φd (‖z̃(t)‖S) z̃T(t)SGH̃∆(t)x(t)

−2φd (‖z̃(t)‖S) z̃T(t)SGW̃ T
a (t)z(t)−2φd (‖e(t)‖P)eT(t)PBJ̃∆(t)z(t)

−2φd (‖e(t)‖P)eT(t)PBW̃ T
u (t)x(t)+2α

−1tr H̃T
∆ (t)

˙̂H∆(t)+2γ
−1
a tr W̃ T

a (t)
˙̂Wa(t)

+2β
−1tr J̃T

∆ (t)
˙̂J∆(t)+2γ

−1
u tr W̃ T

u (t)
˙̂Wu(t). (8.30)

Using (8.16), (8.17), (8.21), and (8.22), (8.30) reduces to

V̇(·) ≤ −φd (‖z̃(t)‖S)‖z̃(t)‖2−φd (‖e(t)‖P)‖e(t)‖2 ≤ 0, (8.31)

12Note that V(0,0,0,0,0,0) = 0, V(z̃,e, H̃∆,W̃a, J̃∆,W̃u)> 0 for all (z̃,e, H̃∆,W̃a, J̃∆,W̃u) 6= (0,0,0,0,0,0), and dφ (‖z̃(t)‖S)/dt =
2φd (‖z̃(t)‖S) z̃T(t)S ˙̃z(t), dφ (‖e(t)‖P)/dt = 2φd (‖e(t)‖P)eT(t)Pė(t).
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which guarantees the Lyapunov stability, and hence, the boundedness of the solution
(
z̃(t),e(t), H̃∆(t),W̃a(t),

J̃∆(t),W̃u(t)
)
.

To reach the conclusion that limt→∞z̃(t) = 0 and limt→∞e(t) = 0, we first show the boundedness of

the reference model signals zr(t) and xr(t). For this purpose, using (8.20), (8.18) and (8.23) can be written

in compact form as

θ̇(t) =A(Ĵ∆(t),Ŵu(t))θ(t)+ω(·), (8.32)

where θ(t) = [xT
r (t),z

T
r (t)]

T and

ω(·) =

 B[(J0 + Ĵ∆(t))z̃(t)+(L1 +Ŵ T
u (t))e(t)]

Gr[L2c(t)− Ĵ∆(t)z̃(t)− (L1 +Ŵ T
u (t))e(t)]

 . (8.33)

It follows from the Lyapunov stability of the solution
(
z̃(t),e(t), H̃∆(t),W̃a(t), J̃∆(t),W̃u(t)

)
that ω(·) in

(8.32) is a bounded perturbation. Since ω(·) is bounded and A(Ĵ∆(t),Ŵu(t)) is quadratically stable by

Assumption 8.4.1, it follows that xr(t) and zr(t) are bounded [88]. Moreover, z(t) and x(t) are bounded as

a consequence of the boundedness of the respective signals z̃(t), zr(t), e(t), and xr(t), such that from (8.24)

and (8.25), ˙̃z(t) and ė(t) are also bounded. Now, from the proof of Theorem 5.3 in [72], limt→∞z̃(t) = 0 and

limt→∞e(t) = 0. Finally, (8.31) implies that V(z̃(t),e(t), H̃∆(t),W̃a(t), J̃∆(t),W̃u(t)) ≤ Vmax, where Vmax ,

V(z̃(0),e(0), H̃∆(0),W̃a(0), J̃∆(0),W̃u(0)). It then follows that φ (‖z̃(t)‖S) ≤ Vmax and φ (‖e(t)‖P) ≤ Vmax,

and hence, the performance bounds respectively given by (8.27) and (8.28) are immediate. �

Remark 8.4.1 Similar to [95, 101–105, 114, 118], we now use LMIs to satisfy the quadratic stability [97]

of (8.26) for given projection bounds Ĵ∆,max and Ŵu,max on the elements of Ĵ∆(t) and Ŵu(t), respectively. To

elucidate this point, let J∆,i1,...,il ∈ Rm×p and W u,i1,...,il ∈ Rn×m be respectively defined as

J∆,i1,...,i f =



(−1)i1 Ĵ∆,max,1 (−1)i1+m Ĵ∆,max,1+m . . . (−1)i1+(p−1)m Ĵ∆,max,1+(p−1)m

(−1)i2 Ĵ∆,max,2 (−1)i2+m Ĵ∆,max,2+m . . . (−1)i2+(p−1)m Ĵ∆,max,2+(p−1)m

...
...

. . .
...

(−1)im Ĵ∆,max,m (−1)i2m Ĵ∆,max,2m . . . (−1)ipm Ĵ∆,max,pm


, (8.34)
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W u,i1,...,ig =



(−1)i1Ŵu,max,1 (−1)i1+nŴu,max,1+n . . . (−1)i1+(m−1)nŴu,max,1+(m−1)n

(−1)i2Ŵu,max,2 (−1)i2+nŴu,max,2+n . . . (−1)i2+(m−1)nŴu,max,2+(m−1)n

...
...

. . .
...

(−1)inŴu,max,n (−1)i2nŴu,max,2n . . . (−1)imnŴu,max,mn


, (8.35)

where i f ∈ {1,2}, f ∈ {1, ...,2pm}, such that J∆,i1,...,i f represents the corners of the hypercube defining the

maximum variation of Ĵ∆(t), and ig ∈ {1,2}, g ∈ {1, ...,2mn}, such that W u,i1,...,ig represents the corners of

the hypercube defining the maximum variation of Ŵu(t). Then, let

Ai1,...,ih =

 A+BW T
u,i1,...,ig B(J0 + J∆,i1,...,i f )

−Gr(L1 +W T
u,i1,...,ig) Fr−GrJ∆,i1,...,i f

 , (8.36)

where h ∈
{

1, ...,2(pm+mn)
}

, be the corners of the hypercube constructed from all the permutations of

J∆,i1,...,i f and W u,i1,...,ig . By proper selection of K1 in Fr = F −GK1 and L1, it can then be shown that

AT
i1,...,ihP+PAi1,...,ih < 0, P > 0, (8.37)

implies thatAT
(
Ĵ∆(t),Ŵu(t)

)
P+PA

(
Ĵ∆(t),Ŵu(t)

)
< 0 [96, 99]; thus, one can solve the LMI given by (8.37)

to ensure Assumption 8.4.1 is satisfied.

The performance bounds on the unactuated dynamics from Theorem 8.4.1 are “strict” in relation to

the reference model given by (8.23). Since this reference model alters the trajectory of the ideal reference

model dynamics given by

ẋid
r (t) = Arxid

r (t)+Brc(t), xid
r (0) = xid

r0, (8.38)

where xid
r (t) ∈ Rn is the ideal reference state (which is bounded by

∥∥xid
r (t)

∥∥
2 ≤ x∗r for a bounded reference

command ‖c(t)‖2 ≤ c∗), it is also necessary to analyze the distance between the unactuated dynamical

system and this ideal reference model. This is also considered to be important in other works in which

an ideal reference model has been modified (see, for example, [118, 197]). For this purpose, we define

x̃r(t), xr(t)−xid
r (t) as the error between the reference model given by (8.23) and the ideal reference (8.38).

Next, note that
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∥∥x(t)− xid
r (t)

∥∥
2 = ‖e(t)+ x̃r(t)‖2

≤ ‖e(t)‖2 +‖x̃r(t)‖2 , (8.39)

implying that decreasing the bounds on both error signals will effectively decrease the distance between the

unactuated dynamical system trajectory and the ideal reference model trajectory.

Remark 8.4.2 The performance bounds given by (8.27) and (8.28) can also be written as

‖z̃(t)‖2 <
εz̃√

λmin(S)
, (8.40)

‖e(t)‖2 <
εe√

λmin(P)
, (8.41)

respectively. From (8.41), we can enforce part of (8.39) through the a-priori, user-defined bound εe.

The next theorem shows the bound on ‖x̃r(t)‖2 also depends on the enforced performance bounds.

Theorem 8.4.2 Consider the reference model for the actuated dynamics given by (8.18), the reference model

for the unactuated dynamics given by (8.23), and the ideal reference model given by (8.38) subject to the

control signal given by (8.20) and the update laws (8.21) and (8.22). Under Assumption 8.4.1, the upper

bound for ‖x̃r(t)‖2 is given by

‖x̃r(t)‖2 ≤
√

λmax(P)
λmin(P)

Θ
∗, (8.42)

where

Θ
∗ , 2ρ

−1 ‖PB‖F

[
ψ
∗
(

εe√
λmin(P)

+ x∗r
)
+φ
∗
(

εz̃√
λmin(S)

)
+‖L2‖F c∗

]
. (8.43)

Proof. Consider the reference model error dynamics obtained from the reference model (8.23) and

the ideal reference model (8.38) subject to the control signal (8.20) given by

˙̃xr(t) = Arx̃r(t)+B[J0z(t)−u1(t)]

= (A+BŴ T
u (t))x̃r(t)+B(J0 + Ĵ∆(t))zr(t)+B

[
(L1 +Ŵ T

u (t))e(t)

+(J0 + Ĵ∆(t))z̃(t)+(L1 +Ŵ T
u (t))x

id
r (t)−L2c(t)

]
. (8.44)

In addition, the reference model (8.18) subject to (8.20) can be written as
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żr(t) = Frzr(t)−Gr(L1 +Ŵ T
u (t))x̃r(t)−Gr

[
(L1 +Ŵ T

u (t))e(t)

+(J0 + Ĵ∆(t))z̃(t)+(L1 +Ŵ T
u (t))x

id
r (t)−L2c(t)

]
. (8.45)

Now, it follows that (8.44) and (8.45) can be written in compact form as

ξ̇ (t) = A(Ĵ∆(t),Ŵu(t))ξ (t)+Bκ(·), (8.46)

with ξ (t) = [x̃T
r (t),z

T
r (t)]

T, B = [BT,−GT
r ]

T, and

κ(·) = (L1 +Ŵ T
u (t))e(t)+(J0 + Ĵ∆(t))z̃(t)+(L1 +Ŵ T

u (t))x
id
r (t)−L2c(t). (8.47)

Note that κ(·) is bounded as a result of Theorem 8.4.1 and the boundedness of the ideal reference

model (8.38). This bound can be written as

‖κ(·)‖2 =
∥∥(L1 +Ŵ T

u (t))e(t)+(J0 + Ĵ∆(t))z̃(t)+(L1 +Ŵ T
u (t))x

id
r (t)−L2c(t)

∥∥
2

≤ ψ
∗(‖e(t)‖2 + x∗r )+φ

∗ ‖z̃(t)‖2 +‖L2‖F c∗, (8.48)

where
∥∥L1 +Ŵ T

u (t)
∥∥

F ≤ ψ∗ and
∥∥J0 + Ĵ∆(t)

∥∥
F ≤ φ ∗. Using the enforced performance bounds given by

(8.40) and (8.41), (8.48) can be further bounded as

‖κ(·)‖2 ≤ ψ
∗
(

εe√
λmin(P)

+ x∗r
)
+φ
∗ εz̃√

λmin(S)
+‖L2‖F c∗, (8.49)

Next, it follows from the quadratic stability of A(Ĵ∆(t),Ŵu(t)) by Assumption 8.4.1 and compactness that

there exists a ρ ∈ R+ such that

AT(Ĵ∆(t),Ŵu(t))P+PA(Ĵ∆(t),Ŵu(t))+ρI ≤ 0. (8.50)

Now, consider the positive-definite energy function

V(ξ ) = ξ
TPξ , (8.51)

where differentiation and use of (8.46) yields
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V̇(ξ (t)) = 2ξ
T(t)P ξ̇ (t)

= ξ
T(t)

[
AT(Ĵ∆(t),Ŵu(t))P+PA(Ĵ∆(t),Ŵu(t))

]
ξ (t)+2ξ

T(t)PBκ(·). (8.52)

Furthermore, using (8.49) and (8.50), one can write (8.52) as

V̇(ξ (t)) ≤ −ρ ‖ξ (t)‖2
2 +2‖ξ (t)‖2 ‖PB‖F ‖κ(·)‖2

≤ −ρ ‖ξ (t)‖2
2 +2‖ξ (t)‖2 ‖PB‖F

[
ψ
∗
(

εe√
λmin(P)

+ x∗r

)
+φ
∗ εz̃√

λmin(S)
+‖L2‖F c∗

]
= −‖ξ (t)‖2

(
‖ξ (t)‖2−Θ

∗), (8.53)

and hence, V̇(ξ (t))< 0 outside the compact set Ω = {ξ : ‖ξ (t)‖2 ≤Θ∗} .

Next, it follows that V(ξ ) is upper and lower bounded by λmin(P)‖ξ (t)‖2
2 ≤ V(ξ ) ≤ λmax(P)

·‖ξ (t)‖2
2, and since ‖x̃r(t)‖2

2 ≤ ‖ξ (t)‖2
2 it follows that

λmin(P)‖x̃r(t)‖2
2 ≤ λmax(P)‖ξ (t)‖2

2 ≤ λmax(P)Θ∗2. (8.54)

Division of both sides of (8.54) by λmin(P) and then taking the square root results in (8.42). �

Remark 8.4.3 From Theorem 8.4.2, one can reduce the bound on ‖x̃r(t)‖2 through the selection of the a-

priori, user-defined performance bounds in (8.27) and (8.28). It then follows from Theorems 8.4.1 and 8.4.2

as well as the discussion in Remark 8.4.2 that performance guarantees can be effectively enforced between

the unactuated dynamical system trajectories and the ideal reference model trajectories.

Remark 8.4.4 The reference model of the actuated system given by (8.18) already represents the ideal

dynamics. It is designed to match the ideal case discussed in Remark 8.2.1 such that the additional control

signal u1(t) can be “passed” through to the unactuated dynamics by means of the physical interconnection.

For this reason, a similar analysis as in Theorem 8.4.2 is not performed here.

8.5 Illustrative Numerical Example

We now present a numerical example to illustrate the efficacy of the proposed set-theoretic adaptive

control architecture. For this purpose, consider the interconnected uncertain dynamical system depicted in

Figure 8.2, which has an actuated cart interconnected to an unactuated cart with an inverted pendulum. The

212



www.manaraa.com

Figure 8.2: An interconnected system with an actuated cart physically connected to an unactuated cart with
inverted pendulum.

dynamics for the interconnected system in Figure 8.2 can be given by



θ̇(t)

θ̈(t)

ẋ(t)

ẍ(t)


=



0 1 0 0

(Mu+m)g
Mul 0 k0

Mul
b0

Mul

0 0 0 1

mg
Mu

0 − k0
Mu
− b0

Mu





θ(t)

θ̇(t)

x(t)

ẋ(t)


+



0

− 1
Mul

0

1
Mu


((

[k0,b0]+ [δk,δb]
)z(t)

ż(t)



+[−δk,−δb]

x(t)

ẋ(t)

), (8.55)

ż(t)

z̈(t)

 =

 0 1

− k0
Ma
− b0

Ma


z(t)

ż(t)

+
 0

1
Ma

(u(t)+
(
[k0,b0]+ [δk,δb]

)x(t)

ẋ(t)



+[−δk,−δb]

z(t)

ż(t)

). (8.56)

For this example, the cart masses are known as Ma = 10.0 (kg) and Mu = 5.0 (kg), the pendulum has a length

of l = 3 (m) with a mass m = 1.0 (kg), and g = 9.81 (m/s2) is the gravitational constant. In addition, the

spring constant k = k0+δk has a known nominal value of k0 = 5.0 (N ·m−1) with δk representing unknown

variation and the damper coefficient b = b0 +δb has a known nominal value of b0 = 2.0 (N · sec ·m−1) with

δb representing unknown variation. For the simulation, δk is set to 1.0 and δb is set to 0.5. Furthermore,

we initialize the actuated cart at z0 = [0.1,0]T and the unactuated cart at x0 = [0.1,0,0.1,0] and apply a step

command signal for the unactuated cart.
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Linear quadratic regulation theory [91] is used to design the nominal feedback control gains K1 and

L1 for the actuated and unactuated carts respectively. Through tuning, we select the weighting matrices

Qa = diag[600, 50] to penalize the states of the actuated cart and Ra = 25 to penalize the control input

u(t), such that we obtain K1 = [117.6,58.0] and design the Hurwitz reference model Fr for the actuated

cart. For the unactuated cart, we select Qu = diag[0.1, 1, 10, 1] to penalize its states and Ru = 1.2−1 to

penalize the control input u1(t) such that we obtain L1 = [−186.7,−97.6,−10.8,−11.8] for the unactuated

cart, which is used to design its Hurwitz reference model matrix Ar. The feedforward gain K2 is designed

such that −J0(F −GK1)
−1GK2 = 1, where J0 = [k0,b0], which results in K2 = 24.5. Similarly, a pre-filter

is used such that a desired unactuated cart position x(t) is followed. For this purpose, using C = [0,0,1,0],

the gain L2 is calculated as L2 = −(C(A−BL1)
−1B)−1 = −5.8. Finally, using the rectangular projection

operator, bounds on the uncertainties are set element-wise to be 10% greater than each uncertain element

of Wa = Wu = [−δk,−δb]T and H∆ = J∆ = [δk,δb]. The learning gains are set as γa = γu = α = β = 1,

such that we solely focus on the ability of the error dependent learning gains φd (‖z̃(t)‖S) and φd (‖e(t)‖P)

to enforce the performance bounds which are set to εz̃ = εe = 0.25.

The feasibility of the control parameters and system uncertainties is first verified using the LMI

analysis discussed in Remark 8.4.1. With a feasible solution, the proposed adaptive control is implemented,

which results in the performance shown in Figures 8.3 and 8.4. In particular, Figure 8.3 shows that the

position of the unactuated cart properly follows the reference model trajectory, while the pendulum remains

properly inverted. Figure 8.4 shows that the performance bounds on the actuated and unactuated carts are

enforced for all time. The initial conditions of the carts start just within the user-defined bound such that the

error dependent gain is larger to prevent violation of the performance bound. As the command is applied

and the carts follow the command, the performance guarantee remains enforced.

8.6 Conclusion

We proposed an adaptive control architecture for interconnected uncertain dynamical systems to

control and enforce performance bounds on not only the actuated dynamics but also the unactuated dynamics

using the physical interconnection. It was shown that stability and enforced performance guarantees of

the interconnected system are obtained using a set-theoretic adaptive control architecture predicated on

restricted potential functions. As a result, the system error trajectories of the actuated and unactuated

dynamics were shown to be restricted and stay within user-defined limits even in the presence of uncer-

214



www.manaraa.com

tainties in both the actuated and unactuated dynamics as well as unknown physical interconnections. It was

also shown through application of LMIs that the stability of the selected control parameters and allowable

interconnected system uncertainties could be verified.
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Figure 8.3: Proposed set-theoretic adaptive control performance for interconnected actuated and unactuated
carts.
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CHAPTER 9: CONCLUDING REMARKS AND FUTURE RESEARCH

9.1 Concluding Remarks

The intent of this dissertation has been to present new model reference adaptive control architectures

with stability, performance, and robustness considerations, to address challenges related to the verification of

adaptive control systems. Specifically, the proposed architectures allow for improved transient performance

as well as enforced performance guarantees, trajectory following of nonlinear reference models, correct

adaptation in the presence of actuator dynamics, and control of large-scale interconnected modular systems.

To address the challenges in improving the transient performance, first an approach using artificial

basis functions was presented. These artificial basis functions are constructed using a gradient optimization

proceedure such that they can improve the transient response of an adaptively controlled system, and hence,

can be used to achieve predictable closed-loop system performance. This is then extended to a direct

uncertainty minimization approach that uses modification terms in the adaptive control law and the update

law to suppress the effect of system uncertainty on the transient system response for improved system

performance. In addition, the use of a varying gain on the modification term was shown to keep the

system error approximately within a-priori given, user-defined error performance bounds. This was then

generalized further to incorporate a nonlinear reference model to better capture the desired closed-loop

system performance for a class of nonlinear uncertain dynamical systems.

For the adaptive control of uncertain dynamical systems in the presence of high-order actuator

dynamics, an LMI-based hedging approach was presented. Specifically, the proposed approach modifies the

ideal reference model dynamics using the hedging method to allow correct adaptation that is not affected by

the presence of actuator dynamics. The stability of this modified reference model coupled with the actuator

dynamics was analyzed using tools and methods from Lyapunov stability, matrix mathematics, and LMIs.

In addition, the distance between the uncertain dynamical system and the ideal (i.e., unmodified) reference

model dynamics was also analyzed and it was remarked that this distance either can be made small by

increasing the learning gain and the bandwidth of the actuator dynamics or asymptotically vanishes when
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the uncertain dynamical system is driven by constant reference commands. This approach was further

generalized for the cases in which the system uncertainties are nonlinear, the actuator output is unknown,

and the actuator dynamics contain an additional throughput term with an application to the input time-delay

problem. In addition, a detailed presentation of the algorithm used to compute the high-order actuator

dynamics parameters was included with an application to a hypersonic vehicle model subject to pole-

zero actuator dynamics. Finally, to go beyond the hedging approach for actuator dynamics that can only

guarantee bounded trajectories in the neighborhood of the ideal reference model trajectories, a new model

reference adaptive control architecture using expanded reference models was proposed. It was shown that the

trajectories of the expanded reference model remain predictably close to the trajectories of the ideal reference

model as compared to the hedging approach. In addition, it was shown that asymptotic convergence to the

ideal reference model trajectories can be guaranteed using a new command governor architecture developed

for the proposed expanded reference model. Moreover, to achieve a robust implementation in the presence of

possible uncertainties in the bandwidths of actuator channels, the expanded reference model was redesigned

with the estimate of actuator bandwidths.

For the control of large-scale interconnected modular systems a new decentralized adaptive control

architecture was proposed using a set-theoretic adaptive approach predicated on restricted potential func-

tions. The key feature of this methodology was to restrict the system error trajectories of the active modules

such that they are guaranteed to stay within user-defined limits even in the presence of the unmodeled

dynamics resulting from the passive modules. This was then extended to control and enforce performance

bounds on not only the actuated dynamics (active module) but also the unactuated dynamics (passive

module) using the physical interconnection. Finally, it was also shown through application of LMIs that

the stability of the selected control parameters and allowable interconnected system uncertainties could be

verified.

9.2 Future Research

There are several possible research directions that can be considered for each result in this disserta-

tion. Since each architecture proposed assumes fully measurable states, one global direction is to extend to

the case in which there is limited state information (i.e., output feedback adaptive control). In addition, more

experimentation could be conducted to further show the effectiveness of the proposed results in real-world

scenarios and bridge the gap between theory and practice. One such possible experimental result for the
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work in Chapter 7 is an application to a small scale morphing wing aircraft. Additional experimentation

could also include application of the performance oriented architectures to unmanned aerial vehicles.

For the actuator dynamics problem, a large amount of work has already gone into the LMI-based

hedging approach including several generalizations as documented in Chapters 4 and 5. The improved

architecture proposed in Chapter 6 is a more recent result, and hence, only considers, first order actuators,

linear uncertainties, and known actuator outputs. Possible research directions would then be to extend

the work in Chapter 6 to consider high-order actuator dynamics, nonlinear uncertainties, and unknown

actuator outputs. Since the expanded reference model with the command governor architecture has been

shown to capture the ideal reference model trajectories (and the LMI-based hedging approach cannot), these

extensions would make this the most general approach for adaptive control systems subject to actuator

dynamics.

While the results in Chapter 7 and 8 consider fixed performance bounds, this can be generalized to

the case in which the performance bound is time-varying (i.e., ε(t)) by using recent results [160] proposed

for sole systems. This extension allows for the initial tracking error e(0) to be large and then converge

to a small region defined by ε(t). Finally, as noted in Section 1, addressing the challenges presented by

actuator nonlinearities is another possible research direction. Currently, the author has preliminary work on

this using the expanded reference model architecture for uncertain dynamical systems with both actuator

dynamics and actuator amplitude saturation limits [198].

218



www.manaraa.com

REFERENCES

[1] K. Zhou and J. C. Doyle, Essentials of robust control, vol. 180. Upper Saddle River, NJ: Prentice
Hall, 1998.

[2] S. Skogestad and I. Postlethwaite, Multivariable feedback control: Analysis and design, vol. 2. New
York, NY: Wiley, 2007.

[3] H. P. Whitaker, J. Yamron, and A. Kezer, Design of Model Reference Control Systems for Aircraft.
Cambridge, MA: Instrumentation Laboratory, Massachusetts Institute of Technology, 1958.

[4] P. V. Osburn, H. P. Whitaker, and A. Kezer, “New developments in the design of adaptive control
systems,” Institute of Aeronautical Sciences, 1961.

[5] K. S. Narendra and A. M. Annaswamy, Stable adaptive systems. Mineola, NY: Courier Corporation,
2012.

[6] E. Lavretsky and K. A. Wise, Robust Adaptive Control. London: Springer-Verlag, 2013.

[7] P. A. Ioannou and J. Sun, Robust adaptive control. Mineola, NY: Courier Corporation, 2012.

[8] C. Rohrs, L. Valavani, M. Athans, and G. Stein, “Robustness of continuous-time adaptive control
algorithms in the presence of unmodeled dynamics,” IEEE Transactions on Automatic Control,
vol. 30, no. 9, pp. 881–889, 1985.

[9] B. Riedle and P. Kokotovic, “A stability-instability boundary for disturbance-free slow adaptation
with unmodeled dynamics,” IEEE Transactions on Automatic Control, vol. 30, no. 10, pp. 1027–
1030, 1985.

[10] M. Matsutani, A. Annaswamy, and E. Lavretsky, “Guaranteed delay margins for adaptive control of
scalar plants,” in IEEE Conference on Decision and Control, pp. 7297–7302, 2012.

[11] S. M. Naik, P. Kumar, and B. E. Ydstie, “Robust continuous-time adaptive control by parameter
projection,” IEEE Transactions on Automatic Control, vol. 37, no. 2, pp. 182–197, 1992.

219



www.manaraa.com

[12] K. M. Dogan, B. C. Gruenwald, T. Yucelen, and J. A. Muse, “Relaxing the stability limit of adaptive
control systems in the presence of unmodelled dynamics,” International Journal of Control, pp. 1–11,
2017.

[13] A. J. Koshkouei and A. S. Zinober, “Adaptive output tracking backstepping sliding mode control of
nonlinear systems,” IFAC Proceedings Volumes, vol. 33, no. 14, pp. 167–172, 2000.

[14] M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and Adaptive Control Design. New
York, NY: Wiley, 1995.

[15] T. Yucelen and W. M. Haddad, “Output feedback adaptive stabilization and command following for
minimum phase dynamical systems with unmatched uncertainties and disturbances,” International
Journal of Control, vol. 85, no. 6, pp. 706–721, 2012.

[16] B.-J. Yang, T. Yucelen, J.-Y. Shin, and A. Calise, “LMI-based analysis of an adaptive flight control
system with unmatched uncertainty,” in AIAA Infotech@ Aerospace, p. 3436, 2010.

[17] N. T. Nguyen, “Multi-objective optimal control modification adaptive control method for systems
with input and unmatched uncertainties,” in AIAA Guidance, Navigation, and Control Conference,
pp. 1–15, 2014.

[18] C. D. Heise and F. Holzapfel, “Uniform ultimate boundedness of a model reference adaptive
controller in the presence of unmatched parametric uncertainties,” in IEEE International Conference
on Automation, Robotics, and Applications, pp. 149–154, 2015.

[19] E. Arabi, T. Yucelen, and B. C. Gruenwald, “Model reference adaptive control for uncertain
dynamical systems with unmatched disturbances: A command governor-based approach,” in Robotics
and Mechatronics for Agriculture, pp. 193–202, CRC Press, 2017.

[20] D. P. Wiese, A. M. Annaswamy, J. A. Muse, M. A. Bolender, and E. Lavretsky, “Adaptive output
feedback based on closed-loop reference models for hypersonic vehicles,” Journal of Guidance,
Control, and Dynamics, vol. 38, no. 12, pp. 2429–2440, 2015.

[21] H. K. Khalil, “Adaptive output feedback control of nonlinear systems represented by input-output
models,” IEEE Transactions on Automatic Control, vol. 41, no. 2, pp. 177–188, 1996.

[22] A. Albattat, B. Gruenwald, and T. Yucelen, “Design and analysis of adaptive control systems
over wireless networks,” Journal of Dynamic Systems, Measurement, and Control, vol. 139, no. 7,
p. 074501, 2017.

220



www.manaraa.com

[23] E. Lavretsky and N. Hovakimyan, “Stable adaptation in the presence of input constraints,” Systems &
Control Letters, vol. 56, no. 11-12, pp. 722–729, 2007.

[24] M. Thiel, D. Schwarzmann, A. M. Annaswamy, M. Schultalbers, and T. Jeinsch, “Improved
performance for adaptive control of systems with input saturation,” in American Control Conference,
pp. 6012–6017, 2016.

[25] M. Schwager and A. M. Annaswamy, “Direct adaptive control of multi-input plants with magnitude
saturation constraints,” in IEEE Conference on Decision and Control, pp. 783–788, 2005.

[26] M. Schwager, A. M. Annaswamy, and E. Lavretsky, “Adaptation-based reconfiguration in the
presence of actuator failures and saturation,” in American Control Conference, pp. 2640–2645, 2005.

[27] A. Annaswamy and J.-E. Wong, “Adaptive control in the presence of saturation non-linearity,”
International Journal of Adaptive Control and Signal Processing, vol. 11, no. 1, pp. 3–19, 1997.

[28] S. P. Karason and A. M. Annaswamy, “Adaptive control in the presence of input constraints,” in
American Control Conference, pp. 1370–1374, 1993.

[29] D. Li, N. Hovakimyan, and C. Cao, “Positive invariant set estimation of l1 adaptive controller in
the presence of input saturation,” International Journal of Adaptive Control and Signal Processing,
vol. 27, no. 11, pp. 1012–1030, 2013.

[30] E. N. Johnson, Limited authority adaptive flight control. School of Aerospace Engineering, Georgia
Institute of Technology, 2000.

[31] E. N. Johnson and A. J. Calise, “Limited authority adaptive flight control for reusable launch
vehicles,” Journal of Guidance, Control, and Dynamics, vol. 26, no. 6, pp. 906–913, 2003.

[32] E. N. Johnson and A. J. Calise, “Pseudo-control hedging: A new method for adaptive control,” in
Advances in Navigation Guidance and Control Technology Workshop, pp. 1–2, 2000.

[33] E. Johnson, A. J. Calise, H. A. El-Shirbiny, and R. T. Rysdyk, “Feedback linearization with neural
network augmentation applied to X-33 attitude control,” in AIAA Guidance, Navigation, and Control
Conference, 2000.

[34] E. N. Johnson and A. J. Calise, “Neural network adaptive control of systems with input saturation,”
in American Control Conference, vol. 5, pp. 3527–3532, 2001.

221



www.manaraa.com

[35] T. Yucelen and W. M. Haddad, “Low-frequency learning and fast adaptation in model reference
adaptive control,” IEEE Transactions on Automatic Control, vol. 58, no. 4, pp. 1080–1085, 2013.

[36] T. Yucelen and E. Johnson, “On achieving predictable adaptive control response for uncertain
dynamical systems with large domains of operation,” in AIAA Guidance, Navigation, and Control
Conference, p. 4774, 2012.

[37] Z. T. Dydek, A. M. Annaswamy, and E. Lavretsky, “Adaptive control and the NASA X-15-3 flight
revisited,” IEEE Control Systems, vol. 30, no. 3, pp. 32–48, 2010.

[38] N. Nguyen, K. Krishnakumar, and J. Boskovic, “An optimal control modification to model-reference
adaptive control for fast adaptation,” in AIAA Guidance, Navigation and Control Conference and
Exhibit, p. 7283, 2008.

[39] T. T. Georgiou and M. C. Smith, “Robustness analysis of nonlinear feedback systems: An input-
output approach,” IEEE Transactions on Automatic Control, vol. 42, no. 9, pp. 1200–1221, 1997.

[40] B. D. O. Anderson, “Failures of adaptive control theory and their resolution,” Communications in
Information & Systems, vol. 5, no. 1, pp. 1–20, 2005.

[41] M. A. Duarte and K. S. Narendra, “Combined direct and indirect approach to adaptive control,” IEEE
Transactions on Automatic Control, vol. 34, no. 10, pp. 1071–1075, 1989.

[42] J.-J. E. Slotine and W. Li, “Composite adaptive control of robot manipulators,” Automatica, vol. 25,
no. 4, pp. 509–519, 1989.

[43] E. Lavretsky, “Combined/composite model reference adaptive control,” IEEE Transactions on
Automatic Control, vol. 54, no. 11, p. 2692, 2009.

[44] K. Y. Volyanskyy, A. J. Calise, and B.-J. Yang, “A novel Q-modification term for adaptive control,”
in American Control Conference, 2006.

[45] K. Y. Volyanskyy, A. J. Calise, B. J. Yang, and E. Lavretsky, “An error minimization method in
adaptive control,” in AIAA Guidance, Navigation, and Control Conference, 2006.

[46] K. Y. Volyanskyy, W. M. Haddad, and A. J. Calise, “A new neuroadaptive control architecture
for nonlinear uncertain dynamical systems: Beyond σ -and e-modifications,” IEEE Transactions on
Neural Networks, vol. 20, no. 11, pp. 1707–1723, 2009.

222



www.manaraa.com

[47] G. Chowdhary and E. N. Johnson, “Theory and flight-test validation of a concurrent-learning adaptive
controller,” Journal of Guidance, Control, and Dynamics, vol. 34, no. 2, pp. 592–607, 2011.

[48] G. Chowdhary, T. Yucelen, M. Mühlegg, and E. N. Johnson, “Concurrent learning adaptive control
of linear systems with exponentially convergent bounds,” International Journal of Adaptive Control
and Signal Processing, vol. 27, no. 4, pp. 280–301, 2013.

[49] T. Yucelen, B. Gruenwald, J. Muse, and G. De La Torre, “Adaptive control with nonlinear reference
systems,” in American Control Conference, 2015.

[50] Quanser AERO User Manual, 2016. Available at https://www.quanser.com/products/quanser-aero/.

[51] X. Wang and N. Hovakimyan, “L1 adaptive controller for nonlinear time-varying reference systems,”
Systems & Control Letters, vol. 61, no. 4, pp. 455–463, 2012.

[52] Y. Kawaguchi, H. Eguchi, T. Fukao, and K. Osuka, “Passivity-based adaptive nonlinear control for
active steering,” IEEE International Conference on Control Applications, pp. 214–219, 2007.

[53] S. K. Scarritt, “Nonlinear model reference adaptive control for satellite attitude tracking,” AIAA
Guidance, Navigation, and Control Conference, 2008.

[54] F. Peter, M. Leitao, and F. Holzapfel, “Adaptive augmentation of a new baseline control architecture
for tail-controlled missiles using a nonlinear reference model,” AIAA Guidance, Navigation, and
Control Conference, 2012.

[55] C. Cao and N. Hovakimyan, “L1 adaptive controller for systems in the presence of unmodelled
actuator dynamics,” in IEEE Conference on Decision and Control, pp. 891–896, 2007.

[56] C.-Y. SU and Y. Stepanenko, “Backstepping-based hybrid adaptive control of robot manipulators
incorporating actuator dynamics,” International journal of adaptive control and signal processing,
vol. 11, no. 2, pp. 141–153, 1997.

[57] G. De La Torre, T. Yucelen, and E. Johnson, “Reference control architecture in the presence of
measurement noise and actuator dynamics,” in American Control Conference, pp. 4961–4966, 2014.

[58] J. Boskovic, J. A. Jackson, and R. Mehra, “Robust adaptive control in the presence of unmodeled
actuator dynamics,” in AIAA Guidance, Navigation, and Control Conference, p. 5194, 2013.

[59] D. D. Siljak, Decentralized control of complex systems. Mineola, NY: Courier Corporation, 2011.

223



www.manaraa.com

[60] E. J. Davison and A. G. Aghdam, Decentralized control of large-scale systems. New York, NY:
Springer Publishing Company, Incorporated, 2014.

[61] P. A. Ioannou, “Decentralized adaptive control of interconnected systems,” IEEE Transactions on
Automatic Control, vol. 31, no. 4, pp. 291–298, 1986.

[62] D. T. Gavel and D. D. Siljak, “Decentralized adaptive control: structural conditions for stability,”
IEEE Transactions on Automatic Control, vol. 34, no. 4, pp. 413–426, 1989.

[63] L. Shi and S. K. Singh, “Decentralized adaptive controller design for large-scale systems with higher
order interconnections,” IEEE Transactions on Automatic Control, vol. 37, no. 8, pp. 1106–1118,
1992.

[64] C. Wen, “Indirect robust totally decentralized adaptive control of continuous-time interconnected
systems,” IEEE Transactions on Automatic Control, vol. 40, no. 6, pp. 1122–1126, 1995.

[65] J. T. Spooner and K. M. Passino, “Decentralized adaptive control of nonlinear systems using radial
basis neural networks,” IEEE Transactions on Automatic Control, vol. 44, no. 11, pp. 2050–2057,
1999.

[66] T. Yucelen, B.-J. Yang, and A. J. Calise, “Derivative-free decentralized adaptive control of large-scale
interconnected uncertain systems,” in IEEE Conference on Decision and Control, pp. 1104–1109,
2011.

[67] B. M. Mirkin, “Decentralized adaptive controller with zero residual tracking errors,” in
Mediterranean Conference on Control and Automation, pp. 28–30, 1999.

[68] K. S. Narendra and N. O. Oleng, “Exact output tracking in decentralized adaptive control systems,”
IEEE Transactions on Automatic Control, vol. 47, no. 2, pp. 390–395, 2002.

[69] B. M. Mirkin, “Comments on “Exact output tracking in decentralized adaptive control”,” IEEE
Transactions on Automatic Control, vol. 48, no. 2, pp. 348–350, 2003.

[70] K. Narendra, N. Oleng, and S. Mukhopadhyay, “Decentralised adaptive control with partial
communication,” IEE Proceedings-Control Theory and Applications, vol. 153, no. 5, pp. 546–555,
2006.

[71] P. Panagi and M. M. Polycarpou, “Distributed fault accommodation for a class of interconnected
nonlinear systems with partial communication,” IEEE Transactions on Automatic Control, vol. 56,
no. 12, pp. 2962–2967, 2011.

224



www.manaraa.com

[72] T. Yucelen and J. S. Shamma, “Adaptive architectures for distributed control of modular systems,” in
American Control Conference, pp. 1328–1333, 2014.

[73] T. Guo, “Decentralized control for large-scale interconnected nonlinear systems based on barrier
lyapunov function,” Mathematical Problems in Engineering, 2015.

[74] E. Arabi, B. C. Gruenwald, T. Yucelen, and N. T. Nguyen, “A set-theoretic model reference adaptive
control architecture for disturbance rejection and uncertainty suppression with strict performance
guarantees,” International Journal of Control, vol. 91, no. 5, pp. 1195–1208, 2018.

[75] B. Gruenwald and T. Yucelen, “On transient performance improvement of adaptive control
architectures,” International Journal of Control, vol. 88, no. 11, pp. 2305–2315, 2015.

[76] N. Hovakimyan and C. Cao, L1 adaptive control theory: Guaranteed robustness with fast adaptation,
vol. 21. Philadelphia, PA: SIAM, 2010.

[77] T. Yucelen and W. M. Haddad, “A robust adaptive control architecture for disturbance rejection and
uncertainty suppression with L∞ transient and steady-state performance guarantees,” International
Journal of Adaptive Control and Signal Processing, vol. 26, no. 11, pp. 1024–1055, 2012.

[78] T. Yucelen and A. J. Calise, “Derivative-free model reference adaptive control,” Journal of Guidance,
Control, and Dynamics, vol. 34, no. 4, pp. 933–950, 2011.

[79] T. Yucelen and E. N. Johnson, “Artificial basis functions in adaptive control for transient performance
improvement,” in AIAA Guidance, Navigation, and Control Conference, 2013.

[80] W. M. Haddad and V. Chellaboina, Nonlinear dynamical systems and control: A Lyapunov-based
approach. Princeton, NJ: Princeton University Press, 2008.

[81] T. Yucelen and E. Johnson, “A new command governor architecture for transient response shaping,”
International Journal of Adaptive Control and Signal Processing, vol. 27, no. 12, pp. 1065–1085,
2013.

[82] J.-B. Pomet and L. Praly, “Adaptive nonlinear regulation: Estimation from the lyapunov equation,”
IEEE Transactions on Automatic Control, vol. 37, no. 6, pp. 729–740, 1992.

[83] T. Yucelen, Advances in adaptive control theory: Gradient-and derivative-free approaches. Georgia
Institute of Technology, 2012.

225



www.manaraa.com

[84] A. J. Calise and T. Yucelen, “Adaptive loop transfer recovery,” Journal of Guidance, Control, and
Dynamics, vol. 35, no. 3, pp. 807–815, 2012.

[85] P. Patre, W. MacKunis, C. Makkar, and W. Dixon, “Asymptotic tracking for systems with structured
and unstructured uncertainties,” in IEEE Conference on Decision and Control, pp. 441–446, 2006.

[86] B. C. Gruenwald, T. Yucelen, and J. A. Muse, “Direct uncertainty minimization framework for system
performance improvement in model reference adaptive control,” Machines, vol. 5, no. 1, p. 9, 2017.

[87] B. Gruenwald, T. Yucelen, and M. Fravolini, “Performance oriented adaptive architectures with
guaranteed bounds,” in AIAA Infotech@Aerospace Conference, 2014.

[88] H. K. Khalil, Nonlinear Systems. Upper Saddle River, NJ: Prentice Hall, 2002.

[89] F. L. Lewis, K. Liu, and A. Yesildirek, “Neural net robot controller with guaranteed tracking
performance,” IEEE Transactions on Neural Networks, vol. 6, no. 3, pp. 703–715, 1995.

[90] F. L. Lewis, A. Yesildirek, and K. Liu, “Multilayer neural-net robot controller with guaranteed
tracking performance,” IEEE Transactions on Neural Networks, vol. 7, no. 2, pp. 388–399, 1996.

[91] F. L. Lewis and V. L. Syrmos, Optimal control. New York, NY: Wiley, 1995.

[92] E. Arabi and T. Yucelen, “Experimental results of set-theoretic model reference adaptive control
architecture on an aerospace testbed,” in AIAA Guidance, Navigation, and Control Conference, 2019
(submitted).

[93] K. J. Åström and B. Wittenmark, Adaptive control. Mineola, NY: Courier Corporation, 2013.

[94] C. Cao and N. Hovakimyan, “L1 adaptive controller for systems in the presence of unmodelled
actuator dynamics,” in IEEE Conference on Decision and Control, pp. 891–896, 2007.

[95] B. C. Gruenwald, D. Wagner, T. Yucelen, and J. A. Muse, “Computing actuator bandwidth limits for
model reference adaptive control,” International Journal of Control, vol. 89, no. 12, pp. 2434–2452,
2016.

[96] J. A. Muse, “Frequency limited adaptive control using a quadratic stability framework: Guaranteed
stability limits,” in AIAA Guidance, Navigation, and Control Conference, 2014.

226



www.manaraa.com

[97] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and
Control Theory. Philadelphia, PA: SIAM, 1994.

[98] C. Scherer and S. Weiland, “Linear matrix inequalities in control,” Lecture Notes, Dutch Institute for
Systems and Control, Delft, The Netherlands, vol. 3, 2000.

[99] P. Gahinet, P. Apkarian, and M. Chilali, “Affine parameter-dependent lyapunov functions and real
parametric uncertainty,” IEEE Transactions on Automatic Control, vol. 41, no. 3, pp. 436–442, 1996.

[100] J. A. Muse, “Frequency limited adaptive control using a quadratic stability framework: Stability and
convergence,” in AIAA Guidance, Navigation, and Control Conference, 2014.

[101] B. C. Gruenwald, J. A. Muse, and T. Yucelen, “Adaptive control for a class of uncertain
nonlinear dynamical systems in the presence of high-order actuator dynamics,” in American Control
Conference, pp. 4430–4435, 2017.

[102] B. C. Gruenwald, D. Wagner, T. Yucelen, and J. A. Muse, “An LMI-based hedging approach to
model reference adaptive control with actuator dynamics,” in ASME Dynamic Systems and Control
Conference, 2015.

[103] B. C. Gruenwald, D. Wagner, T. Yucelen, and J. A. Muse, “Computing actuator bandwidth limits for
adaptive control,” in AIAA Guidance, Navigation, and Control Conference, 2016.

[104] B. C. Gruenwald, T. Yucelen, J. A. Muse, and D. Wagner, “Computing stability limits of adaptive
controllers in the presence of high-order actuator dynamics,” IEEE Conference on Decision and
Control, 2016.

[105] B. C. Gruenwald, K. M. Dogan, T. Yucelen, and J. A. Muse, “A model reference adaptive control
framework for uncertain dynamical systems with high-order actuator dynamics and unknown actuator
outputs,” in ASME 2017 Dynamic Systems and Control Conference, 2017.

[106] T. Yucelen, G. De La Torre, and E. N. Johnson, “Improving transient performance of adaptive control
architectures using frequency-limited system error dynamics,” International Journal of Control,
vol. 87, no. 11, pp. 2383–2397, 2014.

[107] T. Yucelen, B. Gruenwald, and J. A. Muse, “A direct uncertainty minimization framework in model
reference adaptive control,” in AIAA Guidance, Navigation, and Control Conference, 2015.

[108] T. E. Gibson, A. M. Annaswamy, and E. Lavretsky, “On adaptive control with closed-loop reference
models: transients, oscillations, and peaking,” IEEE Access, vol. 1, pp. 703–717, 2013.

227



www.manaraa.com

[109] T. E. Gibson, A. M. Annaswamy, and E. Lavretsky, “Improved transient response in adaptive control
using projection algorithms and closed loop reference models,” in AIAA Guidance Navigation and
Control Conference, 2012.

[110] E. Lavretsky, R. Gadient, and I. M. Gregory, “Predictor-based model reference adaptive control,”
Journal of Guidance, Control, and Dynamics, vol. 33, no. 4, pp. 1195–1201, 2010.

[111] Q. Sang and G. Tao, “Performance robustness of MRAC under reduction in actuator effectiveness,”
in American Control Conference, pp. 4506–4511, 2009.

[112] S. Gayaka and B. Yao, “Accommodation of unknown actuator faults using output feedback-based
adaptive robust control,” International Journal of Adaptive Control and Signal Processing, vol. 25,
no. 11, pp. 965–982, 2011.

[113] S. Gayaka and B. Yao, “Output feedback based adaptive robust fault-tolerant control for a class of
uncertain nonlinear systems,” Journal of Systems Engineering and Electronics, vol. 22, no. 1, pp. 38–
51, 2011.

[114] B. C. Gruenwald, T. Yucelen, and J. A. Muse, “Model reference adaptive control in the presence of
actuator dynamics with applications to the input time-delay problem,” in AIAA Guidance, Navigation,
and Control Conference, p. 1491, 2017.

[115] M. Matsutani, Robust adaptive flight control systems in the presence of time delay. Massachusetts
Institute of Technology, 2013.

[116] B. D. Anderson and A. Dehghani, “Challenges of adaptive control–past, permanent and future,”
Annual Reviews in Control, vol. 32, no. 2, pp. 123–135, 2008.

[117] B. C. Gruenwald, T. Yucelen, K. M. Dogan, J. A. Muse, and D. Wagner, “Computing the stability
limits of pole-zero actuator dynamics on adaptive control laws for aerospace applications,” in AIAA
Guidance, Navigation, and Control Conference, 2018.

[118] B. C. Gruenwald, J. A. Muse, D. Wagner, and T. Yucelen, “Adaptive architectures for control of
uncertain dynamical systems with actuator dynamics,” in Advances in Computational Intelligence
and Autonomy for Aerospace Systems (Editor: J. Valasek), AIAA Progress in Aeronautics and
Astronautics Series, American Institute of Aeronautics and Astronautics, (to appear).

[119] J. Lofberg, “Yalmip: A toolbox for modeling and optimization in matlab,” in IEEE International
Symposium on Computer Aided Control Systems Design, 2004.

228



www.manaraa.com

[120] P. Gahinet, A. Nemirovskii, A. J. Laub, and M. Chilali, “The LMI control toolbox,” in IEEE
Conference on Decision and Control, 1994.

[121] T. Lombaerts, G. Looye, P. Chu, and J. A. Mulder, “Pseudo control hedging and its application for
safe flight envelope protection,” in AIAA Guidance, Navigation, and Control Conference, p. 8280,
2010.

[122] M. D. Tandale and J. Valasek, “Adaptive dynamic inversion control with actuator saturation
constraints applied to tracking spacecraft maneuvers,” Journal of the Astronautical Sciences, vol. 52,
no. 4, pp. 517–530, 2004.

[123] E. N. Johnson and S. K. Kannan, “Adaptive trajectory control for autonomous helicopters,” Journal
of Guidance, Control, and Dynamics, vol. 28, no. 3, pp. 524–538, 2005.

[124] Q. Lam, R. Hindman, W. Shell, and B. Ridgely, “Investigation and preliminary development of
a modified pseudo control hedging for missile performance enhancement,” in AIAA Guidance,
Navigation, and Control Conference and Exhibit, p. 6458, 2005.

[125] B. C. Gruenwald, T. Yucelen, K. M. Dogan, and J. A. Muse, “A new adaptive control architecture
for uncertain dynamical systems with actuator dynamics: Beyond pseudo-control hedging,” AIAA
Guidance, Navigation, and Control Conference, 2018.

[126] B. C. Gruenwald, T. Yucelen, K. M. Dogan, and J. A. Muse, “An adaptive architecture for control of
uncertain dynamical systems with unknown actuator bandwidths,” in IFAC Workshop on Networked
& Autonomous Air & Space Systems, 2018 (to appear).

[127] J. Muse, “A method for enforcing state constraints in adaptive control,” in AIAA Guidance,
Navigation, and Control Conference, p. 6205, 2011.

[128] N. Nguyen, “Asymptotic linearity of optimal control modification adaptive law with analytical
stability margins,” in AIAA Infotech@ Aerospace 2010, p. 3301, 2010.

[129] B. Sinafar, A. R. Ghiasi, and A. K. Fazli, “A new model reference adaptive control structure
for uncertain switched systems with unmodeled input dynamics,” Transactions of the Institute of
Measurement and Control, vol. 37, no. 10, pp. 1171–1180, 2015.

[130] T. Bierling, L. Höcht, F. Holzapfel, R. Maier, and A. Wildschek, “Comparative analysis of mrac
architectures in a unified framework,” in AIAA Guidance, Navigation, and Control Conference,
p. 7536, 2010.

229



www.manaraa.com

[131] C. D. Heise, S. P. Schatz, and F. Holzapfel, “Modified extended state observer control of linear
systems,” in AIAA Guidance, Navigation, and Control Conference, p. 0364, 2016.

[132] M. Pakmehr and T. Yucelen, “Adaptive control of uncertain systems with gain scheduled reference
models and constrained control inputs,” American Control Conference, pp. 691–696, 2014.

[133] E. Garone, S. Di Cairano, and I. Kolmanovsky, “Reference and command governors for systems with
constraints: A survey on theory and applications,” Automatica, vol. 75, pp. 306–328, 2017.

[134] B. C. Gruenwald, E. Arabi, T. Yucelen, A. Chakravarthy, and D. McNeely, “Decentralized adaptive
architectures for control of large-scale active-passive modular systems with stability and performance
guarantees,” International Journal of Control, 2018 (accepted manuscript).

[135] G. E. Dullerud and F. Paganini, A course in robust control theory: A convex approach, vol. 36. New
York, NY: Springer Science & Business Media, 2013.

[136] Y. Liu and X.-Y. Li, “Decentralized robust adaptive control of nonlinear systems with unmodeled
dynamics,” IEEE Transactions on Automatic Control, vol. 47, no. 5, pp. 848–856, 2002.

[137] N. Hovakimyan, E. Lavretsky, B.-J. Yang, and A. J. Calise, “Coordinated decentralized adaptive
output feedback control of interconnected systems,” IEEE Transactions on Neural Networks, vol. 16,
no. 1, pp. 185–194, 2005.

[138] Y.-J. Liu, S. Tong, and C. P. Chen, “Adaptive fuzzy control via observer design for uncertain nonlinear
systems with unmodeled dynamics,” IEEE Transactions on Fuzzy Systems, vol. 21, no. 2, pp. 275–
288, 2013.

[139] X. Xia, T. Zhang, and Q. Wang, “Decentralized adaptive output feedback dynamic surface control
of interconnected nonlinear systems with unmodeled dynamics,” Journal of the Franklin Institute,
vol. 352, no. 3, pp. 1031–1055, 2015.

[140] B. C. Gruenwald, E. Arabi, T. Yucelen, A. Chakravarthy, and D. McNeely, “A decentralized adaptive
control architecture for large-scale active-passive modular systems,” in American Control Conference,
pp. 3347–3352, 2017.

[141] T. Yucelen and J. D. Peterson, “Active-passive networked multiagent systems,” in IEEE Conference
on Decision and Control, pp. 6939–6944, 2014.

[142] J. D. Peterson and T. Yucelen, “An active–passive networked multiagent systems approach to
environment surveillance,” in AIAA Guidance, Navigation, and Control Conference, 2015.

230



www.manaraa.com

[143] J. D. Peterson, T. Yucelen, G. Chowdhary, and S. Kannan, “Exploitation of heterogeneity in
distributed sensing: An active-passive networked multiagent systems approach,” in American Control
Conference, pp. 4112–4117, 2015.

[144] D. W. Casbeer, Y. Cao, E. Garcia, and D. Milutinovi, “Average bridge consensus: Dealing with
active-passive sensors,” in ASME Dynamic Systems and Control Conference, 2015.

[145] J. D. Peterson and T. Yucelen, “Application of active-passive dynamic consensus filter approach to
multitarget tracking problem for situational awareness in unknown environments,” in AIAA Guidance,
Navigation, and Control Conference, 2016.

[146] T. Yucelen and J. D. Peterson, “Distributed control of active-passive networked multiagent systems,”
IEEE Transactions on Control of Network Systems, 2016.

[147] A. Van der Schaft, L2-gain and passivity techniques in nonlinear control. New York, NY: Springer
Science & Business Media, 2012.

[148] N. Nguyen, “Elastically shaped future air vehicle concept,” NASA Innovation Fund Award, 2010.

[149] N. Nguyen and J. Urnes, “Aeroelastic modeling of elastically shaped aircraft concept via wing shaping
control for drag reduction,” in AIAA Atmospheric Flight Mechanics Conference, pp. 13–16, 2012.

[150] N. Nguyen, K. Trinh, D. Nguyen, and I. Tuzcu, “Nonlinear aeroelasticity of a flexible wing structure
coupled with aircraft flight dynamics,” in AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference, 2012.

[151] W. Nobleheart, A. Chakravarthy, and N. T. Nguyen, “Optimal and decentralized controller designs
for an elastically shaped aircraft,” in AIAA/ASMe/ASCE/AHS/SC Structures, Structural Dynamics,
and Materials Conference, p. 1042, 2014.

[152] W. Nobleheart, A. Chakravarthy, and N. Nguyen, “Active wing shaping control of an elastic aircraft,”
in American Control Conference, pp. 3059–3064, 2014.

[153] K. B. Ngo, R. Mahony, and Z.-P. Jiang, “Integrator backstepping using barrier functions for systems
with multiple state constraints,” in IEEE Conference on Decision and Control, pp. 8306–8312, 2005.

[154] K. P. Tee, S. S. Ge, and F. E. H. Tay, “Adaptive control of electrostatic microactuators with
bidirectional drive,” IEEE Transactions on Control Systems Technology, vol. 17, no. 2, pp. 340–352,
2009.

231



www.manaraa.com

[155] K. P. Tee, S. S. Ge, and E. H. Tay, “Barrier lyapunov functions for the control of output-constrained
nonlinear systems,” Automatica, vol. 45, no. 4, pp. 918–927, 2009.

[156] A. K. Kostarigka and G. A. Rovithakis, “Adaptive dynamic output feedback neural network control
of uncertain mimo nonlinear systems with prescribed performance,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 23, no. 1, pp. 138–149, 2012.

[157] B. Ren, S. S. Ge, K. P. Tee, and T. H. Lee, “Adaptive neural control for output feedback nonlinear
systems using a barrier lyapunov function,” IEEE Transactions on Neural Networks, vol. 21, no. 8,
pp. 1339–1345, 2010.

[158] M. M. Polycarpou and P. A. Ioannou, “A robust adaptive nonlinear control design,” in American
Control Conference, pp. 1365–1369, 1993.

[159] M. L. Fravolini, E. Arabi, and T. Yucelen, “A model reference adaptive control approach for uncertain
dynamical systems with strict component-wise performance guarantees,” in AIAA Guidance,
Navigation, and Control Conference, p. 1572, 2018.

[160] E. Arabi and T. Yucelen, “A generalization to set-theoretic model reference adaptive control
architecture for enforcing user-defined time-varying performance bounds,” in American Control
Conference, pp. 5077–5082, 2017.

[161] M. Bisgaard, A. la Cour-Harbo, E. N. Johnson, and J. D. Bendtsen, “Vision aided state estimator for
helicopter slung load system,” IFAC Proceedings Volumes, vol. 40, no. 7, pp. 425–430, 2007.

[162] M. Bisgaard, A. la Cour-Harbo, and J. Bendtsen, “Full state estimation for helicopter slung load
system,” in AIAA Guidance, Navigation, and Control Conference and Exhibit, p. 6762, 2007.

[163] M. Bisgaard, J. D. Bendtsen, and A. la Cour-Harbo, “Modeling of generic slung load system,” Journal
of Guidance, Control, and Dynamics, vol. 32, no. 2, pp. 573–585, 2009.

[164] M. Bisgaard, A. la Cour-Harbo, and J. D. Bendtsen, “Adaptive control system for autonomous
helicopter slung load operations,” Control Engineering Practice, vol. 18, no. 7, pp. 800–811, 2010.

[165] M. Bernard and K. Kondak, “Generic slung load transportation system using small size helicopters,”
in IEEE International Conference on Robotics and Automation, pp. 3258–3264, 2009.

[166] C. M. Ivler, M. B. Tischler, and J. D. Powell, “Cable angle feedback control systems to improve
handling qualities for helicopters with slung loads,” in AIAA Guidance, Navigation and Control
Conference, 2011.

232



www.manaraa.com

[167] L. S. Cicolani and G. E. Ehlers, “Modeling and simulation of a helicopter slung load stabilization
device,” 2002.

[168] S. El-Ferik, A. H. Syed, H. M. Omar, and M. A. Deriche, “Anti-swing nonlinear path tracking
controller for helicopter slung load system,” IFAC Proceedings Volumes, vol. 46, no. 30, pp. 134–
141, 2013.

[169] J.-P. Laumond, “Controllability of a multibody mobile robot,” IEEE Transactions on Robotics and
Automation, vol. 9, no. 6, pp. 755–763, 1993.

[170] K. Kobayashi and T. Yoshikawa, “Controllability of under-actuated planar manipulators with one
unactuated joint,” The International Journal of Robotics Research, vol. 21, no. 5-6, pp. 555–561,
2002.

[171] N. H. McClamroch, C. Rui, I. Kolmanovsky, S. Cho, and M. Reyhanoglu, “Control problems for
planar motion of a rigid body with an unactuated internal degree of freedom,” in American Control
Conference, vol. 1, pp. 229–233, 1998.

[172] M. Reyhanoglu, A. van der Schaft, N. H. McClamroch, and I. Kolmanovsky, “Dynamics and control
of a class of underactuated mechanical systems,” IEEE Transactions on Automatic Control, vol. 44,
no. 9, pp. 1663–1671, 1999.

[173] R. Olfati-Saber, “Nonlinear control and reduction of underactuated systems with symmetry. ii.
unactuated shape variables case,” in IEEE Conference on Decision and Control, vol. 5, pp. 4164–
4169, 2001.

[174] J. Grizzle, C. H. Moog, and C. Chevallereau, “Nonlinear control of mechanical systems with an
unactuated cyclic variable,” IEEE Transactions on Automatic Control, vol. 50, no. 5, pp. 559–576,
2005.

[175] S. Cho, M. McClamroch, and M. Reyhanoglu, “Feedback control of a space vehicle with unactuated
fuel slosh dynamics,” in AIAA Guidance, Navigation, and Control Conference and Exhibit, p. 4046,
2000.

[176] M. Reyhanoglu, “Maneuvering control problems for a spacecraft with unactuated fuel slosh
dynamics,” in IEEE Conference on Control Applications, vol. 1, pp. 695–699, 2003.

[177] K.-S. Hong, “An open-loop control for underactuated manipulators using oscillatory inputs: Steering
capability of an unactuated joint,” IEEE Transactions on Control Systems Technology, vol. 10, no. 3,
pp. 469–480, 2002.

233



www.manaraa.com

[178] R. Ortega and M. W. Spong, “Stabilization of underactuated mechanical systems via interconnection
and damping assignment,” IFAC Proceedings Volumes, vol. 33, no. 2, pp. 69–74, 2000.

[179] M. W. Spong, “The swing up control problem for the acrobot,” IEEE Control Systems, vol. 15, no. 1,
pp. 49–55, 1995.

[180] R. D. Gregg and L. Righetti, “Controlled reduction with unactuated cyclic variables: Application to
3d bipedal walking with passive yaw rotation,” IEEE Transactions on Automatic Control, vol. 58,
no. 10, pp. 2679–2685, 2013.

[181] D. J. Braun and M. Goldfarb, “A control approach for actuated dynamic walking in biped robots,”
IEEE Transactions on Robotics, vol. 25, no. 6, pp. 1292–1303, 2009.

[182] D. Seto and J. Baillieul, “Control problems in super-articulated mechanical systems,” IEEE
Transactions on Automatic Control, vol. 39, no. 12, pp. 2442–2453, 1994.

[183] J. Baillieul, “The behavior of single-input super-articulated mechanisms,” in American Control
Conference, pp. 1622–1626, 1991.

[184] J. Baillieul, “Stable average motions of mechanical systems subject to periodic forcing,” Dynamics
and Control of Mechanical Systems: The Falling Cat and Related Problems, vol. 1, pp. 1–23, 1993.

[185] Z.-P. Jiang and H. Nijmeijer, “Tracking control of mobile robots: A case study in backstepping,”
Automatica, vol. 33, no. 7, pp. 1393–1399, 1997.

[186] Z.-P. Jiang and H. Nijmeijer, “A recursive technique for tracking control of nonholonomic systems in
chained form,” IEEE Transactions on Automatic Control, vol. 44, no. 2, pp. 265–279, 1999.

[187] M. I. El-Hawwary, A.-L. Elshafei, H. M. Emara, and H. A. A. Fattah, “Adaptive fuzzy control of
the inverted pendulum problem,” IEEE Transactions on Control Systems Technology, vol. 14, no. 6,
pp. 1135–1144, 2006.

[188] H.-H. Lee, “Motion planning for three-dimensional overhead cranes with high-speed load hoisting,”
International Journal of Control, vol. 78, no. 12, pp. 875–886, 2005.

[189] Y. Fang, B. Ma, P. Wang, and X. Zhang, “A motion planning-based adaptive control method for
an underactuated crane system,” IEEE Transactions on Control Systems Technology, vol. 20, no. 1,
pp. 241–248, 2012.

234



www.manaraa.com

[190] Y.-L. Gu, “A direct adaptive control scheme for under-actuated dynamic systems,” in IEEE
Conference on Decision and Control, pp. 1625–1627, 1993.

[191] C.-Y. Su and Y. Stepanenko, “Adaptive variable structure set-point control of underactuated robots,”
IEEE Transactions on Automatic Control, vol. 44, no. 11, pp. 2090–2093, 1999.

[192] K.-D. Nguyen and H. Dankowicz, “Adaptive control of underactuated robots with unmodeled
dynamics,” Robotics and Autonomous Systems, vol. 64, pp. 84–99, 2015.

[193] C.-L. Hwang, C.-C. Chiang, and Y.-W. Yeh, “Adaptive fuzzy hierarchical sliding-mode control for
the trajectory tracking of uncertain underactuated nonlinear dynamic systems,” IEEE Transactions on
Fuzzy Systems, vol. 22, no. 2, pp. 286–299, 2014.

[194] A. P. Aguiar and J. P. Hespanha, “Trajectory-tracking and path-following of underactuated
autonomous vehicles with parametric modeling uncertainty,” IEEE Transactions on Automatic
Control, vol. 52, no. 8, pp. 1362–1379, 2007.

[195] B. C. Gruenwald, E. Arabi, T. Yucelen, A. Chakravarthy, D. McNeely, and S. N. Balakrishnan,
“Decentralized adaptive stabilization of large-scale active-passive modular systems,” in AIAA
Guidance, Navigation, and Control Conference, p. 1895, 2017.

[196] K. Narendra and A. Annaswamy, “A new adaptive law for robust adaptation without persistent
excitation,” IEEE Transactions on Automatic Control, vol. 32, no. 2, pp. 134–145, 1987.

[197] T. Yucelen, S. N. Balakrishnan, and E. Arabi, “Adaptive set-theoretic emulator reference architecture
(ASTERA): Control of uncertain dynamical systems with performance guarantees and smooth
transients,” in AIAA Guidance, Navigation, and Control Conference, p. 0874, 2018.

[198] B. C. Gruenwald, T. Yucelen, K. M. Dogan, and J. A. Muse, “On adaptive control of uncertain
dynamical systems in the presence of actuator dynamics and amplitude saturation limits,” in IEEE
Conference on Decision and Control, 2018 (submitted).

235



www.manaraa.com

APPENDIX A: PROJECTION OPERATOR

Definition A.1 Consider a convex hypercube in the form Ω =
{

θ ∈ Rn : (θ min
i ≤ θi ≤ θ max

i )i=1,2, ...,n} ,

where Ω ∈ Rn, and θ min
i and θ max

i respectively represent the minimum and maximum bounds for the ith

component of the n-dimensional parameter vector θ . Furthermore, for a sufficiently small positive constant

ε0, consider another hypercube in the form Ωε =
{

θ ∈ Rn : (θ min
i +ε0 ≤ θi ≤ θ max

i − ε0)i=1,2,...,n} , where

Ωε ⊂Ω. The projection operator Proj : Rn×Rn→ Rn is then defined component-wise by

Proj(θ ,y),



(
θ max

i −θi
ε0

)
yi, if θi > θ max

i − ε0 and yi > 0,(
θi−θ min

i
ε0

)
yi, if θi < θ min

i + ε0 and yi < 0,

yi, otherwise,

(A.1)

where y ∈ Rn.

Based on Definition A.1 and θ ∗ ∈ Ωε , one can show the inequality (θ − θ ∗)T (Proj(θ ,y)− y) ≤

0, holds for θ ∈ Ω and y ∈ Rn [6]. In addition, we use a generalization of this definition to matrices

as Projm(Θ,Y ) =
(
Proj(col1(Θ),col1(Y )) . . . ,Proj(colm(Θ),colm (Y ))

)
, where Θ ∈ Rn×m, Y ∈ Rn×m, and

coli(·) denotes the i-th column operator. In this case, for a given matrix Θ∗, it follows that tr
[
(Θ−

Θ∗)T(Projm(Θ,Y ) −Y )
]
= ∑

m
i=1

[
coli(Θ−Θ∗)T(Proj(coli(Θ), coli(Y ))− coli(Y ))

]
≤ 0, holds.
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